

इंडियन ऑयल कॉर्पोरेशन लिमिटेड एओडि - डिगबोई रिफाइनरी

पो.ओ. डिगबोई, पिन-786171, असम

AOD - Digboi Refinery P. O. Digboi, PIN: 786171, Assam : 03751-262000 Tel.

Fax : 03751-269015 E-mail: aoddigboi@indianoil.in

Website: www.iocl.com

असम ऑयल डिवीजन Assam Oil Division

Ref: HSE: 02 -714/23

Dated: 07.12.2023

To,

The Regional Officer, Integrated Regional Office, Guwahati, Ministry of Environment, Forest and Climate Change, 4thFloor, Housefed Building, G.S. Road, Rukminigaon, Guwahati - 781022

Sub: Submission of the Half-Yearly Compliance Report for the period (1st Apr'23 to 30th Sep'23) on Environmental Stipulations pertaining to various units of Digboi Refinery.

Dear Sir,

Please find enclosed herewith the six monthly compliance status of Digboi Refinery on the Environmental Clearance Stipulations of the Environmental Clearance letters referred to above for the period (April 2023-September 2023).

Thanking you,

Yours sincerely, For Indian Oil Corporation (AOD)

D. K. Barua General Manager (TS & HSE)

Copy To:

- 1. The Member Secretary, Pollution Control Board, Assam, Guwahati-21.
- 2. The Environmental Engineer, North Eastern Zonal Office, CPCB, Shillong-14
- 3. The Regional Executive Engineer, PCBA Dibrugarh-786001

HALF YEARLY COMPLIANCE REPORT OF ENVIRONMENTAL CLEARANCE DIGBOI REFINERY (1St April 2023 – 30th Sep 2023)

INDEX

Units	Clearance No.	Page No.
Compliance status of DRMP (Digboi Refinery Modernization Project of AVU,DCU,HGU)	J-11011/12/87-1A dated 19-10-1987	3
Compliance status of CPP(Captive Power Plant)	J-13011/3/1987-1A dated 18-06-1987	5
Compliance status of CRU(Catalytic Reformer Unit)	J-11011/8/89-1A dated 26-07-1989	6
Compliance status of SDU(Solvent Dew axing Unit)	J-11011/41/97-1A.II(I) dated 26-07-1989	11
Compliance status of HDTU (Hydro Treated Unit)	J-11013/71/99-1A(II) dated 26-07-1989	12
Compliance status of MSQU (Motor Spirit Quality	J-11011/482/2007-IA II (I) dated 18-03-2008	13

REPORTS ATTACHED

Report Name	Ann exur e list
Average six monthly 21 MINAS parameter of ETP Effluent(polishing pond outlet) Reports by External Agency (M/S Mitra S.K. Private Limited)	Annexure-1
Six monthly River water body sample Report by QC Department of AOD	Annexure-2
Six monthly compliance Report on Quantum Limit (Kg/1000 MT Crude processed)	Annexure-3
Six month Stack emission Report by External Agency (M/S Mitra S.K. Private Limited)	Annexure-4
Six month Ambient Air quality Monitoring Report by External Agency (M/S Mitra S.K. Private Limited)	Annexure-5
Fugitive Monitoring (LDAR) Report	Annexure-6
Latest compliance status of the CREP	Annexure-7

ENVIRONMENTAL CLEARANCE (J-11011/12/87-1A, dated - 19-10-1987) FOR DIGBOI REFINERY MODERNISATION PROJECT

SL. NO	STIPULATIONS	COMPLIANCE STATUS AS ON 06.12.2023
1.0	The concentration levels of all the parameters of the effluent (gaseous & liquids) discharged must comply with MINAS and in the light of MINAS, the Assam oil, Digboi must review the entire effluent generation, routing, treatment and disposal system.	The concentration levels of all the parameters of effluent after treatment at ETP meets the MINAS specification. As per revised CPCB guideline, Digboi Refinery meets the stipulations for all 21 parameters of effluent. Six monthly compliance Report on Quantum Limit (Kg/1000 MT Crude processed) is attached in Annexure-3. Online effluent monitoring & connectivity to CPCB server was commissioned on 28th December 2015. WebSite: Online Emission and Effluent Monitoring System (cpcb.gov.in)
2.0	Monitoring with respect to physical, chemical and biological parameters must be carried out for effluent discharged as well as for the samples of river waters where effluents are discharged.	These tests are carried out regularly and reports submitted to Pollution Control Board, Assam. Monitoring of receiving water bodies is also carried out every month. Six monthly 21 MINAS parameter ETP effluent Reports (Polishing Pond outlet) by External Agency (M/S Mitra S.K. Private Limited) is enclosed as Annexure-1 Six monthly nearby river water body sample by AOD QC Laboratories is enclosed as Annexure-2.
3.0	The sludge drains must be properly covered to avoid land and water pollution during incessant rains.	All OWS systems at DRMP are completely covered.
4.0	The sludge dumping area should be made impervious so that ground water is not affected due to leaching and seepage of associated water containing pollutants.	One HDPE lining concrete oily sludge storage tank of 400m³ capacity was constructed in 2014 to prevent leaching and seepage of oil to ground water. Another storage pit bottom is made up of concrete to avoid leaching.
5.0	The ambient air around Refinery should be monitored at least at four monitoring stations for SPM, SOx, NOx,	Four nos. of Ambient Air quality monitoring stations have been installed around Digboi Refinery-(I) Bazar Gate (II) Wax Sector Cooling Tower (III) New Tank Farm (IV) Effluent

	Hydrocarbons and H ₂ S.	treatment Plant. Ambient air quality monitoring is being carried out on monthly basis by external agency. One no. of Continuous Ambient Air Quality Monitoring Station installed and commissioned in September 2012 at Welfare centre which is connected with CPCB and PCBA server. Six month Ambient Air Quality Monitoring Report by External Agency (M/S Mitra S.K. Private Limited) is attached as Annexure-5
6.0	The stack emission from processes, power generating units and Boilers must be regularly monitored and proper type of stack monitoring/instruments must be procured and installed.	BROOKING COLD COME CONTROL
7.0	Fugitive emissions arising during handling and storage of low boiling petroleum fractions and from effluent treatment plant, leakage through valves and flanges must also be monitored regularly.	Regular monitoring of Hydrocarbons is done with GMI Gas surveyor and as well as with VOC detector in plant & offsite areas by an external CPCB approved agency. Leak detection and repair (LDAR) report for the Quarter 1 of FY 2023-24 is attached as Annexure-6.
8.0	Land filling, if any, must be done with fill material only from within battery limits of the Refinery.	It is being followed accordingly.
9.0	The Assam Oil Division must take up development of green belt as proposed.	[- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

ENVIRONMENTAL CLEARANCE (J-13011/3/1987-1A dated - 18-06-1987) FOR CAPTIVE POWER PLANT

SL. NO	STIPULATIONS	COMPLIANCE STATUS AS ON 06.12.2023
1.0	Only sweet natural gas will be used as feed stock.	Digboi Refinery uses only sweet Natural Gas.
2.0	Under the envisaged modernization programme for the refinery, Sulphur recovery units to be provided to reduce emission of SO ₂ . Efforts should also be made to reduce the emissions of NOx. The existing sulphuric acid plant should be scrapped.	Digboi Refinery processes only indigenous sweet Assam crude with Sulphur content less than 0.25 wt%. A Sulphur Recovery Unit (SRU) has been installed and commissioned in 2004 as a part of Hydrotreater Project. Since the refinery is using natural gas, formation of NOx is very low and always remains within the prescribed limit. Further, low NOx burners are also fitted in all the new units viz. Solvent De-waxing Unit, Hydro-treater Unit, Delayed Coking Unit and MSQ Unit.
3.0	The liquid effluent emanating from the captive power plant and the existing refinery should be treated as per the standards prescribed by the State Pollution Control Board.	Liquid effluent generated from the power plant is negligible which is also routed to ETP for further treatment.
4.0	The height of the stack should not be less than 50 meters.	Complied.
5.0	Green belt around the power plant should be raised.	Digboi Refinery is surrounded by the Upper Dihing Reserve Forest on south and south west side, which acts as a natural Green Belt. Green belt is developed with regular tree plantation around Refinery premises and township area. Since 2002, Digboi Refinery has planted around 1,74,799 trees till September'2023 in and around Digboi Refinery achieving a green belt coverage of 52.8% of the total IOCL area.
6.0	Adequate precautionary measures for preventing and controlling fire and explosion hazards should be taken up specially in the gas storage area.	Natural gas used in the plants is transported through pipeline ex M/s OIL India Ltd. There is no storage of natural gas in the Refinery. Fire fighting facilities are provided at CPP, all process plants and tank farm area for controlling fire and explosion hazards.

ENVIRONMENTAL CLEARANCE (J-11011/8/89-1A dated 26-07-1989) FOR CATALYTIC REFORMER UNIT

SL. NO	STIPULATIONS	COMPLIANCE STATUS AS ON 06.12.2023		2023		
1.0	The project authority must strictly adhere to the stipulations made by State govt. and the State Pollution Control Board.	The stipulations made by the State Govt. and the State Pollution Control Board are strictly followed with regard to effluent and emission norms. The existing CTO has been renewed till 31st March 2028. Digboi Refinery meets all parameters of effluent as perevised CPCB guideline.		vith regard to rch 2028.		
2.0	The project authority will not increase the throughput capacity of the refinery from the existing level.	Crude processing capacity of Digboi Refinery was based on neat Assam crude. The actual crude throughput is based on Govt MoU maintaining all the environmental parameters within the stipulated norm.			hroughput is	
3.0	The project authority must submit a rapid EIA report within a month and a comprehensive EIA report within 15 months to the Ministry for review.	Complied.				
4.0	Gaseous emissions of SO2, Hydrocarbons and oxides of Nitrogen should not exceed the prescribed standard stipulated by Central/State Pollution Control Board. At no time the emission level should be beyond the stipulated standard. In the event of failure of any pollution control system adopted by the unit, the respective unit should be put out of operation immediately and should not be restarted until the control systems are rectified to achieve the desired efficiency.		rted gaseou	s emission o K. Private Lii)x by External
			CRU- HDT(SOx) mg/Nm3	CRU- HDT(NOx) mg/Nm3	CRU- OBSG(SOx) mg/Nm3	CRU- OBSG(NOx) mg/Nm3
		May'23	26.1	71.3	37.5	73.9
		Aug'23	26.5	72.9	38.3	75.1
5.0	The project authority must explore the possibility of maximum recycling of effluent either as process water or for aforestation.	Treated effluent from ETP is recycled to refinery as make up for Fire water tank, Coke Cutting water at delayed coking unit, Wax Sector Cooling Tower, cleaning and gardening purposes. During Apr'23 - Sep'23, 100 % of treated effluent was reused.			elayed coking nd gardening	
6.0	The entire quantity of liquid effluent coming out of the complex should strictly confirm to MINAS both in terms of quantity and quality before discharge in to the drainage system. The process plant effluent should be discharged through pipeline/closed channel.	Effluent is meeting MINAS specification both in quality and quantity before being discharged. Six monthly compliance Report on Quantum Limit (Kg/1000 MT Crude processed) is attached in Annexure-3.				

The project authorities must set up 4 (Four) numbers of Ambient Air quality monitoring stations have been installed around Digboi Refinery-(i)Bazar Gate minimum of four air quality monitoring stations at different location of the plant (ii)Wax Sector Cooling Tower (iii)New Tank Farm (iv) and in the nearby areas. The air quality Effluent treatment Plant. Ambient air quality monitoring is will be monitored as per standard being carried out on monthly basis. procedure. The monitoring of gaseous emissions should also include oxides of 1(One) number of Continuous Ambient Air Quality nitrogen and hydrocarbons. All the Monitoring Station installed and commissioned in stacks of the plant must be provided September 2012 at Welfare centre. with continuous automatic air quality monitoring equipment and stacks Online CAAQMS parameters are being monitored regularly d emission levels must be recorded. through https://aicpl.glensserver.com/#/login Reports should be submitted to Six month Ambient Air quality Monitoring Report by Pollution Control Board once in three External Agency (M/S Mitra S.K. Private Limited) is attached months and to this Ministry once in six as Annexure-5 months. Fixed on-line analyzers are also installed in AVU, DCU, CPP HRSG's, CRU, SDU, HDT, HGU and MSQU and being monitored regularly through RTDBMS. Online connectivity established with CPCB Server and PCBA server for Furnaces having heat capacity of more than 10mkcl/hr (HGU & HRSG's Stacks). Apart from own monitoring, external agencies are also employed to conduct stack emission analysis on regular basis. Online stack monitoring regularly done through Website http://www.envsaindia.com/cpcb/login.php 8.0 The liquid effluent quality must be Water quality monitoring stations were set up:- one near ensured on daily basis. At least five ETP, three at Digboi Nullah and one at oily sludge area. water quality monitoring stations must Liquid effluent quality from ETP outlet is monitored be set up in consultation with the State regularly on daily basis. Pollution Control Board. This should 1. 8(eight) parameters daily basis by QC (AOD) include the monitoring of oil content in 2. 21(twenty-one) parameters on monthly basis tested the river. If the effluent quality exceeds by SPCB approved outside agency. the standard prescribed at any time, the 3. In addition to above four parameters, BOD, COD, TSS corresponding units of the plant which & pH being monitored through online analyzers are contributing to the excessive connected with CPCB Server, 4. Sample from Digboi River and Dihing River is being pollutant load shall be immediately stopped from operation till the quality collected and analyzed by QC (AOD) on monthly of effluent discharged from the units are basis. brought down to the required level. Digboi Refinery has carried out study on "Bio-monitoring 9.0 The project authority must monitor the aquatic life (like fish, tortoise etc.) and of aquatic life in lotic and lentic water bodies in and around Digboi Refinery" by M/S A.B.N Scientific Services, report should be submitted to the Guwahati on May '23. Ministry once in six months. The report was submitted to the office of IRO-Guwahati, MoEF & CC on 1st July'2023 along with the half yearly EC

compliance Report.

10.	The project must start construction only after the approval of the Chief Controller of Explosives and a copy of the consent letter should be made available to this Ministry.	Complied. Present PESO License P/HQ/AS/15/880 is valid till 31.12.2026.
11.	The project authority must provide oil separator in the nullah and the effluents should be discharged through covered drains.	At present oil separator is being provided and the effluents are discharged through covered drain.
12.	No change of stack should be made without the prior approval of the State Pollution Control Board. Alternate pollution control system and/or proper design (steam injection system) of the stacks should be made to minimize hydrocarbon emission due to failure in the flare system in the plant.	Complied.
13.	The project authority must submit the Disaster Management Plan incorporating worst accident scenario and its probable consequence duly approved by the nodal agency of the State Govt. within 3 months.	Disaster Management Plan duly certified by PNGRB empanelled party. Copy of plan submitted to CIF Guwahati & DC, Tinsukia. Offsite drills are carried out regularly, once in a year, along with District Administration, Mutual Aid Partners & NGOs. Onsite Disaster Mock drills are carried out once in a quarter with different scenarios. Emergency response & Disaster Management Plan (ERDMP) of Digboi refinery as per guidelines of PNGRB has been drawn up and certified by M/S Sanmarg Engineering Validation and Assessment Private Ltd. Last Offsite Disaster drill was carried out on 22nd November, 2022 on scenario of "Shear and rupture of 18" NG line between Kharsang Off-Take point to Refinery Fuel Gas Header inside and outside Refinery's East side boundary leading to profuse leakage of NG and resulting in unconfined vapour cloud explosion and fire". Last Odd hours onsite Disaster drill was carried out on 25th March, 2023 on scenario of "Heavy Naphtha leakage from 01-VV-002 bottom 6" vessel body flange joint of Reflux Pump suction line causing Vapour Cloud in the area and leading to Fire"

14.	The Project authority must ensure that the effluent plant fully operational within the next 3 months.	ETP is fully operational since its inception in 1989.
35	TD.	Disk i D.C. I have it a set of the
15.	The project authority must set up laboratory facilities in the existing premises for testing and analyzing gaseous emissions and water quality.	Digboi Refinery has set up its own state of art Quality Control Laboratories inside the Refinery premises with NABL Accreditation ISO/IEC 17025:2017 which is valid till 31.12.2023.
16.	The project authority must provide necessary infrastructural facilities to the construction workers during construction.	Complied. Provided as per requirement.
17.	The project must submit a revised green belt design for the plant and township to this Ministry within three months for approval. The green belt should have minimum tree density of 1000 trees per acres.	Digboi Refinery is surrounded by the Upper Dihing Reserve Forest on south and south west side, which acts as a natural Green Belt. Green belt is developed with regular tree plantation around Refinery premises and township area. Since 2002, Digboi Refinery has planted around 1,74,799 trees till September'2023 in and around Digboi Refinery achieving a green belt coverage of 52.8% of the total IOCL area.
18.	Additional area under the control of project which is not being used for the plant utilities should be afforested and fund for this should be suitably provided.	It is followed as part of IOCL's green belt development.
19.	A separate environmental management cell with suitably qualified people to carry out various functions related to environmental management should be set up under the control of a senior technical person who will directly report to the head of the organization.	Digboi Refinery has a full-fledged Health, Safety and Environment (HSE) unit functioning under Chief General Manager with direct reporting to Head of Organization.HSE Department team consists of General Manager, Chief Manager and Assistant Managers. The HSE team regularly monitors and review the effectiveness of the EMP implementation.

environmental control measure should years are as follows: not be diverted to any other purpose. The implementation schedule for environmental measure must be strictly adhered to.

Adequate fund provision (capital and recurring expenditure) so provided for Allocation. The allocation for the last three

- > 2020-21: Rs 7.74 Cr.
- > 2021-22: Rs 7.78 Cr.
- > 2022-23: Rs 8.83 Cr.

ENVIRONMENTAL CLEARANCE (J-11011/41/97-1A.II(I) dated -05-3-1998) FOR SOLVENT DEWAXING UNIT

SL. NO	STIPULATIONS	COMPLIANCE STATUS AS ON 06.12.2023
1.0	The project authority should submit a Risk Analysis Report within a period of six months and submit the same to the Ministry.	Risk analysis has been carried out by M/s KLG-TNO in 1999 covering all the new units and report submitted to Ministry. A fresh round of Quantitative Risk Analysis (QRA) was carried out by M/s Alfa Project Services Pvt. Ltd, Vadodara in 2005. All the recommendations have already been implemented. Another Quantitative Risk Analysis study for all the units, including MSQU, completed in March, 2012 and various recommendations for further risk reduction are under study for implementation. A fresh Quantitative Risk Assessment for Wax Palletisation Unit completed on August 2013 by ZEEPINE SYSTEM INDIA Pvt. Ltd. Further Quantitative Risk Analysis (QRA) study for all the units of DR was carried out in 2019 by M/s Techniche Engineering Private Limited, Pune and final report received in February 2020. The QRA study report was submitted to the office of IRO-Guwahati, MoEF & CC during Dec'2022 EC Compliance inspection Monitoring.

ENVIRONMENTAL CLEARANCE (J-11013/71/99-1A(II) dated - 13-05-1999) FOR HYDROTREATER UNIT

SL. NO	STIPULATIONS	COMPLIANCE STATUS AS ON 06.12.2023
1.0	The project authority should submit a Risk Analysis Report within a period of six months and submit the same to the Ministry.	Risk analysis has been carried out by M/s KLG-TNO in 1999 covering all the new units and report submitted to Ministry. A fresh round of Quantitative Risk Analysis (QRA) was carried out by M/s Alfa Project Services Pvt. Ltd, Vadodara in 2005. All the recommendations already implemented. Another Quantitative Risk Analysis study for all the units, including MSQU, completed in March, 2012 and various recommendations for further risk reduction are under study for implementation. Further Quantitative Risk Analysis study for all the units of DR was carried out in 2019 by M/s Techniche Engineering Private Limited, Pune and final report received in February 2020. The QRA study report was submitted to the office of IRO-Guwahati, MoEF & CC during Dec'2022 EC Compliance inspection Monitoring.

ENVIRONMENTAL CLEARANCE (J-11011/482/2007-IA II (I), DATED - 18-03-2008) FOR M S QUALITY IMPROVEMENT PROJECT AT DIGBOI REFINERY.

A	Specific Conditions			
SL. NO	STIPULATIONS	COMPLIANCE STATUS AS ON 06.12.2023		
1	The company shall comply with new standards/norms that are being proposed by the CPCB for petrochemical plants and refineries.	Digboi Refinery strictly complies with all the norms and parameters of effluent and gaseous emission as per revised CPCB guideline.		
2	The process emissions (SO ₂ , NOx, HC, VOCs and Benzene) from various units shall conform to the standards prescribed by the Assam State Pollution Control Board from time to time. At no time, the emission levels shall go beyond the stipulated standards. In the event of failure of pollution control system(s) adopted by the unit the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieved.	The various process Emissions are within the prescribed limits and meets the norms as prescribed by MoEF & CC and Assam State Pollution Control Board as mentioned in the CTO. The various Emission reports from Refinery are submitted to Assam State Pollution Control Board and MoEF & CC on regular basis.		
3	Ambient air quality monitoring stations. [SPM, SO ₂ , NOx and NMHC, Benzene] shall be set up in the Refinery complex in consultation with SPCB based on occurrence of maximum ground level concentration and down-wind direction of wind. The monitoring network must be decided based on modeling exercise to represent short term GLCs Continuous on-line stack monitoring equipment should be installed for measurement of SO ₂ and NOx.	5(Five) no's of Ambient Air Quality monitoring stations are already in operation in the Refinery premises as per direction of Pollution Control Board, Assam. Out of five stations one Continuous Ambient Air Quality Monitoring Station is connected with CPCB server. Furnaces having heat capacity of more than 10mkcl/hr (HGU & HRSG's Stacks) are continuously connected with CPCB Server and PCBA server. On line stack monitoring analyzers are already installed for monitoring stack emissions. Apart from own monitoring, external agencies are also employed to conduct stack emission analysis on regular basis as per CPCB guideline.		

4	Quarterly monitoring of fugitive emissions shall be carried out as per the guidelines of CPCB by fugitive emission detectors and reports shall be submitted to the Ministry's regional office at Shillong. For control of fugitive emission all unsaturated hydro carbon will be routed to the flare system and the flare system shall be designed for smoke less burning.	Quarterly monitoring of fugitive emission (VOC) is being carried out regularly by external agency. Report is submitted regularly to the office of MoEF & CC with six monthly compliance reports. For control of fugitive emissions, dual seal has been installed in all light oil pumps with provision of venting at Flare system. Leak detection and repair (LDAR) report for the Quarter 1 of FY 2023-24 is attached as Annexure-6.
5	Fugitive emissions of HC from product storage tank yards etc must be regularly monitored. Sensors for detecting HC leakage shall also be provided at strategic locations. The company shall use low sulphur fuel to minimize S02 emission.	Fugitive emissions of HC from product storage tank yards etc is being monitored quarterly by external agency. HC detectors are already provided at the strategic locations at plants and tank farm areas. HC detectors are maintained by the vendors on quarterly basis. HC detector also provided at MS Quality up gradation unit. Digboi Refinery is using sweet natural gas with average sulphur content of 2.48 ppm.
6	The company shall strictly follow all the recommendation mentioned In the charter on corporate responsibility for environmental protection (CREP).	The latest compliance status of the CREP is enclosed as Annexure -7 Also, Digboi Refinery has carried out various CSR activities in and around Digboi with total CSR budget of Rs 31.1 Cr during last three fiscal years. The activities include the provision of Drinking water facility in schools, water supply to non IOCL consumers in and around Digboi and several other initiatives.
7	The Company shall take necessary measures to prevent fire hazards, containing oil spill and soil remediation as needed. At place of ground flaring. The overhead flaring stack with knockout drums shall be installed to minimize gaseous emissions during flaring.	At Digboi Refinery, flaring is done at the height of 108 meters through flare stack. Knockout drums are provided in the flare system Further, modern fire fighting system and hydrant network system has been provided and it meets OISD - 116 standards. Fire fighting facility at MSQ project is as per OISD-116. Remote HVLR System has been commissioned in October 2013. Installation of Rim Seal Fire Protection System of Fire Water network commissioned for Tank nos. 001, 607, 560 & 452.

8.	To prevent fire and explosion at oil & gas facility, potential ignition should be kept to a minimum and adequate separation distance between potential ignition sources and flammable materials shall be in place.	Separation distance between potential ignition sources and flammable materials are maintained as per OISD – STD-118.
9.	Occupational Health surveillance of worker shall be done on a regular basis and records maintained as per the Factory Act.	Occupational Health surveillance for employees is being carried out as per Factory Act and records maintained at Occupational Health Centre of AOD hospital.
10.	Green belt shall be developed to mitigate the effect of fugitive emission all around the plant in a minimum 30 % plant area in consultation with DFO and as per CPCB guidelines.	Digboi Refinery is surrounded by the Upper Dihing Reserve Forest on south and south west side, which acts as a natural Green Belt. Green belt is developed with regular tree plantation around Refinery premises and township area. Since 2002, Digboi Refinery has planted around 1,74,799 trees till September'2023 in and around Digboi Refinery achieving a green belt coverage of 52.8% of the total IOCL area.
B.	General Conditions	
1	The project authorities must strictly adhere to the stipulations made by the concerned State Pollution Control Board (SPCB) and the State Government and any other statuary body.	The stipulations made by the State Govt. and the State Pollution Control Board are strictly followed with regard to effluent and emission norms. The existing CTO has been renewed till 31st March 2028. Digboi Refinery meets all parameters of effluent as per revised CPCB guideline.

2	No further expansion or modification in the project shall be carried without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to the Ministry for clearance, a fresh reference shall be made to the Ministry.	Complied.
3	At no time, the emissions should go beyond the prescribed standards. In the event of failure of any pollution control system, the respective well site should be immediately put out of operation and should not be restarted until the desired efficiency has been achieved. Provision of adequate height of stack attached to DG sets & flare is to be done.	Stack emission quality data of SOx and NOx are regularly monitored. Apart from own monitoring, external agencies are also employed to conduct stack emission analysis on regular basis as per CPCB guideline.
4	Wastewater shall be properly collected and treated so as to conform to the standards prescribed under EP Act & Rules and mentioned in the Consents provided by the relevant SPCB.	Digboi Refinery had installed Effluent Treatment Plant (ETP) in the year 1989, for the treatment of process wastewater generated from various units of the refinery. Digboi Refinery meets all MINAS parameters related to effluent discharge as per revised CPCB guideline and CTO.
5	The overall noise levels in and around the premises shall be limited within the prescribed standards (75 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels should conform to the standards prescribed under EPA Rules, 1989 viz. 75 dBA (day time) and 70 dBA (night time).	Acoustic hoods are available all over the refinery and silencers exist in all sensitive parts of the plant where noise is a major concern. Moreover, all vehicle/trucks speed is limited to 20 km/hr inside the refinery, which is also less than 75 DB. Quarterly Noise survey is also being carried out by Occupational Health Centre of AOD hospital.

The project authorities must strictly Digboi Refinery strictly follows the provisions made in the comply with the provisions made in Manufacture, Storage and Import of Hazardous Chemicals Manufacture, Storage and Import of Rules 1989 as amended in 2000 and later for handling of Hazardous Chemicals Rules 1989 as hazardous chemicals. amended in 2000 for handling of hazardous chemicals etc. Necessary Present PESO License P/HQ/AS/15/880 is valid till approvals from Chief Controller of 31.12.2026. Explosives must be obtained before commission of the expansion project, if Disaster Management Plan duly certified by PNGRB required, Requisite On-site and Off-site empanelled party. Copy of plan submitted to CIF Guwahati & Disaster Management Plans will be DC. Tinsukia. prepared and implemented. Offsite drills are carried out regularly, once in a year, along with District Administration, Mutual Aid Partners & NGOs. Onsite Disaster Mock drills are carried out once in a quarter with different scenarios. Emergency response & Disaster Management Plan (ERDMP) of Digboi refinery as per guidelines of PNGRB has been drawn up and certified by M/S Sanmarg Engineering Validation and Assessment Private Ltd Disposal of hazardous wastes shall be as Digboi Refinery has been granted of Hazardous Waste Authorization WB/T-311/21-22/115/101 and is valid till the Hazardous Wastes. (Management and Handling) Rules, 31-Mar-2027. 2003 Authorization from the State Pollution Control Board must be Digboi Refinery annually files Hazardous Wastes Return to PCBA, Last Annual Hazardous Wastes Return for FY 2022-23 obtained for collections / treatment has been duly submitted to Pollution Control Board, Assam /storage/disposal of hazardous wastes. on 20.07.2023. The project authorities will provide The HSE department is supported with budgetary adequate funds as nonrecurring and Allocation. The allocation for the last three recurring expenditure to implement the vears are as follows: conditions stipulated by the Ministry of > 2020-21: Rs 7.74 Cr. 2021-22: Rs 7.78 Cr. Environment and Forests as well as the State Government along with the > 2022-23: Rs 8.83 Cr. implementation schedule for all the conditions stipulated herein. The funds so provided should not be diverted for any other purposes.

9	The company shall develop rain water harvesting structures to harvest the runoff water for recharge of ground water.	Storage Cum Percolation Pond (SCP) was commissioned in 2018 utilizing run-off water of 9 interlinked natural catchment areas around Digboi, first of its type in eastern Asia. The usage of rainwater has proven a very cost effective and environment friendly to increase the water table in Digboi area. At present this harvested rain water is meeting 57% the Industrial water requirement of Refinery as feed in Cooling Tower Make up, DM plant, Service water and fire water make up (as back-up in case of requirement)
10	The stipulated conditions will be monitored by the concerned Regional Office of this Ministry /Central Pollution Control Board/State Pollution Control Board. A six monthly compliance report and the monitored data should be submitted to them regularly. It will also be displayed on the Website of the Company	Six-monthly EC compliance reports are duly submitted to IRO Guwahati. Last Report Submitted on 1st July 2023. Previous EC compliance reports of Digboi Refinery are uploaded on Indian Oil website. Link to the website is below. https://iocl.com/statutory-notices
11	The Project Proponent should inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the State Pollution Control Board/ Committee and may also be seen at Website of the Ministry of Environment and Forests at http://www.envfor.nic.in This should be advertised within seven days from the date of issue of the clearance letter at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to the concerned Regional office of this Ministry	The advertisement in local newspapers was published.
12	A separate environment management cell with full fledged laboratory facilities to carry out various management and monitoring functions shall be set up under the control of a Senior Executive.	Digboi Refinery has a full-fledged Health, Safety and Environment (HSE) unit functioning under Chief General Manager with direct reporting to Head of Organization.HSE Department team consists of General Manager, Chief Manager and Assistant Managers. The HSE team regularly monitors and review the effectiveness of the EMP implementation.

	All the formalities for closure of project have been completed and project capitalized on 28.12.2010
--	--

Name & Address of the Customer	Report No.	: MSK/GHY/2023-24/0030
	Report Date	: 18.05.2023
"Indian Oil Corporation Limited Digboi"	Nature of Sample	: Effluent Water
	Sample Mark	: ETP PP OUTLET
Assam Oil Division, PO Digboi Assam	Sample Drawn On	: 25.04.2023
786171	Sample Number	: MSKGL/ED/2023-24/04/01340

CHEMICALANALYSIS RESULT

Sl. No.	Parameter	Unit	Limit	Result	Test Method
0	pH value	None	6.0-8.5	6.87 at 25 Deg C	APHA(23rd Edition) 4500-H-B
2.	Oil & Grease	mg/l	5.0	4.9	APHA (23 rd Edition) 5520B,2017
3.	Total Suspended Solids (as TSS)	mg/l	20.0	12	APHA (23 rd Edition) 2540 D
4.	Biochemical Oxygen Demand (as BOD)	mg/l	15.0	16	APHA (23 rd Edition) 5210B,2017
5.	Chemical Oxygen Demand (as COD)	mg/l	125.0	64	APHA (23 rd Edition) 5220B,2017
6.	Ammoniacal Nitrogen	mg/l	15.0	<0.1	APHA (23rd Edition) 4500-NH3-F 2017
7.	Benzene	mg/l	0.1	< 0.05	APHA (23rd Edition)6200_(O)
8.	Benzo(a)Pyrene	mg/l	0.2	<0.0002	APHA 23rd Edtn -2012 6440C _(O)
9.	Copper (as Cu)	mg/l	1.0	<0.02	APHA (23rd Edition) 3120 B : 2017
90.	Cyanide (as CN)	mg/l	0.20	<0.02	APHA (23rd Edition) 4500 -CN- F: 2017
11.	Hexavalent Chromium (as Cr+6)	mg/l	0.1	<0.01	APHA (23rd Edition) 3500 Cr B : 2017
12.	Lead (as Pb)	mg/l	0.1	<0.005	APHA (23rd Edition) 3120 B : 2017

Count to Page-2

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Page-2

Sl. No.	Parameter	Unit	Limit	Result	Test Method
13.	Mercury (as Hg)	mg/l	0.01	< 0.001	IS 3025 (Part 48): 1994
14.	Nickel (as Ni)	mg/l	1.0	< 0.02	APHA (23rd Edition) 3120 B : 2017
15.	Phenolic Compounds (as C6H5OH)	mg/l	0.35	<0.001	APHA (23rd Edition) 5530C : 2017
16.	Phosphorus (as P)	mg/l	3.0	0.45	APHA (23rd Edition) 4500 -P D, 2017
17.	Sulphide (as S)	mg/l	0.5	<0.1	APHA (23rd Edition) 4500 -S2- D: 2017
18.	Total Chromium (as Cr)	mg/l	2.0	<0.01	APHA (23rd Edition) 3120 B : 2017
19.	Total Kjeldahl Nitrogen	mg/l	40.0	<0.3	APHA (23rd Edition) 2017 4500 -Norg B: 2017
20.	Vanadium (as V)	mg/l	0.2	<0.2	APHA (23rd Edition) 3120B: 2017
21.	Zinc (as Zn)	mg/l	5.0	< 0.02	APHA (23rd Edition) 3120 B : 2017

Report Prepared By:

for Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer	Report No.	: MSK/GHY/2023-24/0119
	Report Date	: 16.06.2023
"Indian Oil Corporation Limited Digboi"	Nature of Sample	: Effluent Water
	Sample Mark	: ETP PP OUTLET
Assam Oil Division, PO Digboi Assam	Sample Drawn On	: 20.05.2023
786171	Sample Number	: MSKGL/ED/2023-24/05/01475

CHEMICALANALYSIS RESULT

Sl. No.	Parameter	Unit	Limit	Result	Test Method
1.	pH value	None	6.0-8.5	6.83 at 25 Deg C	APHA(23rd Edition) 4500-H-B
9 .	Oil & Grease	mg/l	5.0	4.8	APHA (23 rd Edition) 5520B,2017
3.	Total Suspended Solids (as TSS)	mg/l	20.0	13	APHA (23 rd Edition) 2540 D
4.	Biochemical Oxygen Demand (as BOD)	mg/l	15.0	15	APHA (23 rd Edition) 5210B,2017
5.	Chemical Oxygen Demand (as COD)	mg/l	125.0	60	APHA (23 rd Edition) 5220B,2017
6.	Ammoniacal Nitrogen	mg/l	15.0	<0.1	APHA (23rd Edition) 4500-NH3-F 2017
7.	Benzene	mg/l	0.1	<0.05	APHA (23rd Edition)6200_(O)
8.	Benzo(a)Pyrene	mg/l	0.2	<0.0002	APHA 23rd Edtn -2012 6440C _(O)
9.	Copper (as Cu)	mg/l	1.0	<0.02	APHA (23rd Edition) 3120 B : 2017
© 0.	Cyanide (as CN)	mg/l	0.20	<0.02	APHA (23rd Edition) 4500 -CN- F: 2017
11.	Hexavalent Chromium (as Cr+6)	mg/l	0.1	<0.01	APHA (23rd Edition) 3500 Cr B : 2017
12.	Lead (as Pb)	mg/l	0.1	< 0.005	APHA (23rd Edition) 3120 B : 2017

Count to Page-2

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Page-2

Sl. No.	Parameter	Unit	Limit	Result	Test Method
13.	Mercury (as Hg)	mg/l	0.01	<0.001	IS 3025 (Part 48): 1994
14.	Nickel (as Ni)	mg/l	1.0	<0.02	APHA (23rd Edition) 3120 B : 2017
15.	Phenolic Compounds (as C6H5OH)	mg/l	0.35	<0.001	APHA (23rd Edition) 5530C : 2017
16.	Phosphorus (as P)	mg/l	3.0	0.43	APHA (23rd Edition) 4500 -P D, 2017
17.	Sulphide (as S)	mg/l	0.5	<0.1	APHA (23rd Edition) 4500 -S2- D: 2017
18.	Total Chromium (as Cr)	mg/l	2.0	< 0.01	APHA (23rd Edition) 3120 B : 2017
19.	Total Kjeldahl Nitrogen	mg/l	40.0	2.4	APHA (23rd Edition) 2017 4500 -Norg B 2017
20.	Vanadium (as V)	mg/l	0.2	<0.2	APHA (23rd Edition) 3120B: 2017
21.	Zinc (as Zn)	mg/l	5.0	<0.02	APHA (23rd Edition) 3120 B : 2017

Report Prepared Rus

for Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer	Report No.	: MSK/GHY/2023-24/0211	
	Report Date	: 27.07.2023	
"Indian Oil Corporation Limited Digboi"	Nature of Sample	: Effluent Water	
	Sample Mark	: ETP PP OUTLET	
Assam Oil Division, PO Digboi Assam	Sample Drawn On	: 21.06.2023	
786171	Sample Number	: MSKGL/ED/2023-24/06/01013	

CHEMICALANALYSIS RESULT

Sl. No.		Parameter	Unit	Limit	Result	Test Method
1.	pH value	,	None	6.0-8.5	6.87 at 25 Deg C	APHA(23rd Edition) 4500-H-B
9.	Oil & Gr	ease	mg/l	5.0	4.9	APHA (23 rd Edition) 5520B,2017
3.	Total Sus	spended Solids (as TSS)	mg/l	20.0	15	APHA (23 rd Edition) 2540 D
4.	Biochem	ical Oxygen Demand (as BOD)	mg/l	15.0	14	APHA (23 rd Edition) 5210B,2017
5.	Chemica	Oxygen Demand (as COD)	mg/l	125.0	56	APHA (23 rd Edition) 5220B,2017
6.	Ammoni	acal Nitrogen	mg/l	15.0	<0.1	APHA (23rd Edition) 4500-NH3-F 2017
7.	Benzene		mg/l	0.1	<0.05	APHA (23rd Edition)6200_(O)
8.	Benzo(a)	Pyrene	mg/l	0.2	<0.0002	APHA 23rd Edtn -2012 6440C _(O)
9.	Copper (as Cu)	mg/l	1.0	<0.02	APHA (23rd Edition) 3120 B : 2017
0 0.	Cyanide	(as CN)	mg/l	0.20	<0.02	APHA (23rd Edition) 4500 -CN- F: 2017
11.	Hexavale	ent Chromium (as Cr+6)	mg/l	0.1	<0.01	APHA (23rd Edition) 3500 Cr B : 2017
12.	Lead (as	Pb)	mg/l	0.1	<0.005	APHA (23rd Edition) 3120 B : 2017

Count to Page-2

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Page-2

Sl. No.	Parameter	Unit	Limit	Result	Test Method
13.	Mercury (as Hg)	mg/l	0.01	< 0.001	IS 3025 (Part 48): 1994
14.	Nickel (as Ni)	mg/l	1.0	<0.02	APHA (23rd Edition) 3120 B : 2017
15.	Phenolic Compounds (as C6H5OH)	mg/l	0.35	< 0.001	APHA (23rd Edition) 5530C : 2017
16.	Phosphorus (as P)	mg/l	3.0	0.46	APHA (23rd Edition) 4500 -P D, 2017
17.	Sulphide (as S)	mg/l	0.5	<0.1	APHA (23rd Edition) 4500 -S2- D: 2017
18.	Total Chromium (as Cr)	mg/l	2.0	< 0.01	APHA (23rd Edition) 3120 B : 2017
19.	Total Kjeldahl Nitrogen	mg/l	40.0	<0.3	APHA (23rd Edition) 2017 4500 -Norg B: 2017
20.	Vanadium (as V)	mg/l	0.2	<0.2	APHA (23rd Edition) 3120B: 2017
21.	Zinc (as Zn)	mg/l	5.0	< 0.02	APHA (23rd Edition) 3120 B : 2017

Report Prepared By:

for Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer	Report No.	: MSK/GHY/2023-24/0269
	Report Date	: 16.08.2023
"Indian Oil Corporation Limited Digboi"	Nature of Sample	: Effluent Water
	Sample Mark	: ETP PP OUTLET
Assam Oil Division, PO Digboi Assam 786171	Sample Drawn On	: 28.07.2023
/001/1	Sample Number	: 16.08.2023 : Effluent Water : ETP PP OUTLET

CHEMICALANALYSIS RESULT

Sl. No.	Parameter	Unit	Limit	Result	Test Method
1.	pH value	None	6.0-8.5	6.82 at 25 Deg C	APHA(23rd Edition) 4500-H-B
2.	Oil & Grease	mg/l	5.0	4.8	APHA (23 rd Edition) 5520B,2017
3.	Total Suspended Solids (as TSS)	mg/l	20.0	14	APHA (23 rd Edition) 2540 D
4.	Biochemical Oxygen Demand (as BOD)	mg/l	15.0	12	APHA (23 rd Edition) 5210B,2017
5.	Chemical Oxygen Demand (as COD)	mg/l	125.0	42	APHA (23 rd Edition) 5220B,2017
6.	Ammoniacal Nitrogen	mg/l	15.0	<0.1	APHA (23rd Edition) 4500-NH3-F 2017
7.	Benzene	mg/l	0.1	<0.05	APHA (23rd Edition)6200_(O)
8.	Benzo(a)Pyrene	mg/l	0.2	< 0.05	APHA 23rd Edtn -2012 6440C _(O)
9.	Copper (as Cu)	mg/l	1.0	<0.02	APHA (23rd Edition) 3120 B : 2017
0 .	Cyanide (as CN)	mg/l	0.20	<0.02	APHA (23rd Edition) 4500 -CN- F: 2017
11.	Hexavalent Chromium (as Cr+6)	mg/l	0.1	<0.01	APHA (23rd Edition) 3500 Cr B : 2017
12.	Lead (as Pb)	mg/l	0.1	< 0.005	APHA (23rd Edition) 3120 B : 2017

Count to Page-2

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Page-2

Sl. No.	Parameter	Unit	Limit	Result	Test Method
13.	Mercury (as Hg)	mg/l	0.01	<0.001	IS 3025 (Part 48): 1994
14.	Nickel (as Ni)	mg/l	1.0	< 0.02	APHA (23rd Edition) 3120 B : 2017
15.	Phenolic Compounds (as C6H5OH)	mg/l	0.35	<0.001	APHA (23rd Edition) 5530C : 2017
16.	Phosphorus (as P)	mg/l	3.0	0.44	APHA (23rd Edition) 4500 -P D, 2017
17.	Sulphide (as S)	mg/l	0.5	<0.1	APHA (23rd Edition) 4500 -S2- D: 2017
18.	Total Chromium (as Cr)	mg/l	2.0	<0.01	APHA (23rd Edition) 3120 B : 2017
19.	Total Kjeldahl Nitrogen	mg/l	40.0	<0.3	APHA (23rd Edition) 2017 4500 -Norg B: 2017
20.	Vanadium (as V)	mg/l	0.2	<0.2	APHA (23rd Edition) 3120B: 2017
21.	Zinc (as Zn)	mg/l	5.0	<0.02	APHA (23rd Edition) 3120 B : 2017

Report Prepared By:

for Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer	Report No.	: MSK/GHY/2023-24/0383
	Report Date	: 26.09.2023
"Indian Oil Corporation Limited Digboi"	Nature of Sample	: Effluent Water
	Sample Mark	: ETP PP OUTLET
Assam Oil Division, PO Digboi Assam 786171	Sample Drawn On	: 30.08.2023
700171	Sample Number	: 26.09.2023 : Effluent Water : ETP PP OUTLET

CHEMICALANALYSIS RESULT

SI. No.	Parameter	Unit	Limit	Result	Test Method
1.	pH value	None	6.0-8.5	6.87 at 25 Deg C	APHA(23rd Edition) 4500-H-B
Q .	Oil & Grease	mg/l	5.0	4.9	APHA (23 rd Edition) 5520B,2017
3.	Total Suspended Solids (as TSS)	mg/l	20.0	15	APHA (23 rd Edition) 2540 D
4.	Biochemical Oxygen Demand (as BOD)	mg/l	15.0	11	APHA (23 rd Edition) 5210B,2017
5.	Chemical Oxygen Demand (as COD)	mg/l	125.0	41	APHA (23 rd Edition) 5220B,2017
6.	Ammoniacal Nitrogen	mg/l	15.0	<0.1	APHA (23rd Edition) 4500-NH3-F 2017
7.	Benzene	mg/l	0.1	<0.05	APHA (23rd Edition)6200_(O)
8.	Benzo(a)Pyrene	mg/l	0.2	<0.05	APHA 23rd Edtn -2012 6440C_(O
9.	Copper (as Cu)	mg/l	1.0	<0.02	APHA (23rd Edition) 3120 B : 2017
d 0.	Cyanide (as CN)	mg/l	0.20	<0.02	APHA (23rd Edition) 4500 -CN- F: 2017
11.	Hexavalent Chromium (as Cr+6)	mg/I	0.1	<0.01	APHA (23rd Edition) 3500 Cr B : 2017
12.	Lead (as Pb)	mg/l	0.1	< 0.005	APHA (23rd Edition) 3120 B : 2017

Count to Page-2

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Page-2

Sl. No.	Parameter	Unit	Limit	Result	Test Method
13.	Mercury (as Hg)	mg/l	0.01	< 0.001	IS 3025 (Part 48): 1994
14.	Nickel (as Ni)	mg/l	1.0	< 0.02	APHA (23rd Edition) 3120 B : 2017
15.	Phenolic Compounds (as C6H5OH)	mg/l	0.38	<0.001	APHA (23rd Edition) 5530C : 2017
16.	Phosphorus (as P)	mg/l	3.0	0.45	APHA (23rd Edition) 4500 -P D, 2017
17.	Sulphide (as S)	mg/l	0.7	<0.1	APHA (23rd Edition) 4500 -S2- D: 2017
18.	Total Chromium (as Cr)	mg/l	2.0	<0.01	APHA (23rd Edition) 3120 B : 2017
19.	Total Kjeldahl Nitrogen	mg/l	42.0	<0.3	APHA (23rd Edition) 2017 4500 -Norg B 2017
20.	Vanadium (as V)	mg/l	0.5	<0.2	APHA (23rd Edition) 3120B: 2017
21.	Zinc (as Zn)	mg/l	6.0	< 0.02	APHA (23rd Edition) 3120 B : 2017

Report Prepared By:

for Mitra S. K. Private Limited

Authorised Signatory

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited

Report No.	: MSK/GHY/2023-24/0499
Report Date	: 30.10.2023
Nature of Sample	: Effluent Water
Sample Mark	: ETP PP OUTLET
Sample Drawn On	: 29.09.2023
Sample Number	: MSKGL/ED/2023-24/10/00344
	Report Date Nature of Sample Sample Mark Sample Drawn On

CHEMICALANALYSIS RESULT

Sl. No.	Parameter	Unit	Limit	Result	Test Method
1.	pH value	None	6.0-8.5	6.82 at 25 Deg C	APHA(23rd Edition) 4500-H-B
2.	Oil & Grease	mg/I	5.0	4.8	APHA (23 rd Edition) 5520B,2017
3.	Total Suspended Solids (as TSS)	mg/l	20.0	13	APHA (23 rd Edition) 2540 D
4.	Biochemical Oxygen Demand (as BOD)	mg/l	15.0	9.6	APHA (23 rd Edition) 5210B,2017
5.	Chemical Oxygen Demand (as COD)	mg/l	125.0	39	APHA (23 rd Edition) 5220B,2017
6.	Ammoniacal Nitrogen	mg/l	15.0	<0.1	APHA (23rd Edition) 4500-NH3-F 2017
7.	Benzene	mg/l	0.1	<0.05	APHA (23rd Edition)6200_(O)
8.	Benzo(a)Pyrene	mg/l	0.2	<0.05	APHA 23rd Edtn -2012 6440C_(O
9.	Copper (as Cu)	mg/l	1.0	<0.02	APHA (23rd Edition) 3120 B : 2017
10.	Cyanide (as CN)	mg/l	0.20	<0.02	APHA (23rd Edition) 4500 -CN- F: 2017
11.	Hexavalent Chromium (as Cr+6)	mg/I	0.1	<0.01	APHA (23rd Edition) 3500 Cr B : 2017
12.	Lead (as Pb)	mg/l	0.1	< 0.005	APHA (23rd Edition) 3120 B : 2017

Count to Page-2

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

The results relate only to the ttem(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited

Page-2

Sl. No.	Parameter	Unit	Limit	Result	Test Method
13.	Mercury (as Hg)	mg/l	0.01	<0.001	IS 3025 (Part 48): 1994
14.	Nickel (as Ni)	mg/I	1.0	<0.02	APHA (23rd Edition) 3120 B : 2017
15.	Phenolic Compounds (as C6H5OH)	mg/l	0.38	<0.001	APHA (23rd Edition) 5530C : 2017
16.	Phosphorus (as P)	mg/l	3.0	0.43	APHA (23rd Edition) 4500 -P D, 2017
17.	Sulphide (as S)	mg/l	0.7	<0.1	APHA (23rd Edition) 4500 -S2- D: 2017
18.	Total Chromium (as Cr)	mg/I	2.0	<0.01	APHA (23rd Edition) 3120 B : 2017
19.	Total Kjeldahl Nitrogen	mg/l	42.0	<0.3	APHA (23rd Edition) 2017 4500 -Norg B 2017
20.	Vanadium (as V)	mg/l	0.5	<0.2	APHA (23rd Edition) 3120B: 2017
21.	Zinc (as Zn)	mg/l	6\.0	< 0.02	APHA (23rd Edition) 3120 B : 2017

for Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

गुणवत्ता नियंत्रण विभाग (QUALITY CONTROL DEPARTMENT) इंडियन ऑयल कॉर्पोरेशन लिमिटेड(INDIAN OIL CORPORATION LIMITED) (असम ऑयल डिवीजन (ASSAM OIL DIVISION)

हिगबोई रिफाइनरी, असम(DIGBOI REFINERY, ASSAM)

	Analysis Lab Report of D	ihing and	d Digboi R	ivers			
	Source: Dihing an	nd Digboi I	Rivers				
	रिपोर्ट संख्या/ Report No.:DR/QC/April-202	3			Dated 30	.04.202	3
	Dated of sample Coll	ection :-1	1.04.2032			20	
	PARAMETER	pН	Oil & Greese	Phenol	Sulphide	COD	BOD (3 Days) @ 27°
	Test Method	APHA- 4500H*B	APHA-5520-8	АРНА-5530- D	APHA-4500- B	APHA- 5220-B	IS-3025 PAR
	Unit		mg/l	mg/l	mg/I	mg/I	mg/l
Require	ements as per MINAS noems (Minimum National Standards)	6.0-8.5	Max 5.0 mg/i	Max 0.35 mg/l	Max 0.5 mg/l	Max 125 mg/l	Max 15.0 mg/l
S.No	Sample Details			Test R	esults		
1	Digboi River Water in Kenduguri Area	6.5	2.5	0.14	0.1	54	9
2	Digboi River Water (15 km away from Digboi Refinery on Digboi	6.6	2.1	0.11	BDL	37	8
3	Digboi River Water (26 km away from Digboi Refinery on Digboi	6.4	1.5	0.11	BDL	31	7
4	Dihing River water before confluence with Digboi river	7.2	0.7	0.07	BDL	29	6
5	Dihing River water after confluence with Digboi river	7.2	0.6	0.05	BDL	28	6

^{***}BDL = Below Detection Limit

Tested & Report by: -Dipankar Rajkhowa (JQCA) Inter Com Water Lab No:-3592 Approved & Reviwed By :-Dr. Gopal Maurya (QCM) Inter Com No:-3593

brepulyo.

गुणवत्ता नियंत्रण विभाग (QUALITY CONTROL DEPARTMENT) इंडियन ऑयल कॉपॉरेशन लिमिटेड(INDIAN OIL CORPORATION LIMITED) (असम ऑयल डिवीजन (ASSAM OIL DIVISION)

हिंगबोई रिफाइनरी, असम(DIGBOI REFINERY, ASSAM)

	Analysis Lab Report of D	ihing and	d Digboi R	ivers			
	Source: Dihing an	d Digboi	Rivers				
	रिपोर्ट संख्या/ Report No.:DR/QC/126/31				Dated 12	2.05.202	:3
	Dated of sample Coll	ection :-1	1.05.2032		α	0	
	PARAMETER	pН	Oil & Greese	Phenol	Sulphide	COD	BOD (3 Days) @ 27
	Test Method	APHA- 4500H*B	APHA-5520-8	АРНА-5530- D	APHA-4500- B	APHA- 5220-B	IS-3025 PAR 44
	Unit		mg/l	mg/l	mg/I	mg/I	mg/I
Require	ements as per MINAS noems (Minimum National Standards)	6.0-8.5	Max 5.0 mg/i	Max 0.35 mg/l	Max 0.5 mg/l	Max 125 mg/l	Max 15.0 mg/l
S.No	Sample Details			Test R	esults) l.	01
1	Digboi River Water in Kenduguri Area	6.6	2.6	0.15	0.1	56	9
2	Digboi River Water (15 km away from Digboi Refinery on Digboi	6.5	2.1	0.11	BDL	38	7
3	Digboi River Water (26 km away from Digboi Refinery on Digboi	6.3	1.6	0.12	BDL	32	7
4	Dihing River water before confluence with Digboi river	7.3	0.7	0.07	BDL	30	6
5	Dihing River water after confluence with Digboi river	7.3	0.7	0.05	BDL	30	6

^{***}BDL = Below Detection Limit

Tested & Report by: -Dipankar Rajkhowa (JQCA) Inter Com Water Lab No:-3592 Approved & Reviwed By :-Dr. Gopal Maurya (QCM) Inter Com No:-3593

brepulyo.

गुणवत्ता नियंत्रण विभाग (QUALITY CONTROL DEPARTMENT) इंडियन ऑयल कॉपॉरेशन लिमिटेड(INDIAN OIL CORPORATION LIMITED) (असम ऑयल डिवीजन (ASSAM OIL DIVISION)

हिंगबोई रिफाइनरी, असम(DIGBOI REFINERY, ASSAM)

	Analysis Lab Report of D	ihing and	d Digboi Ri	ivers				
	Source: Dihing an	d Digboi	Rivers					
रिपोर्ट संख्या/ Report No.:DR/QC/126/32				Dated 19.06.2023				
	Dated of sample Coll	ection :-1	5.06.2032		α		420	
	PARAMETER	pH	Oil & Greese	Phenol	Sulphide	COD	BOD (3 Days) @ 27°	
Test Method		APHA- 4500H*B	APHA-5520-8	APHA-5530- D	APHA-4500- B	APHA- 5220-B	IS-3025 PAR	
Unit			mg/l	mg/l	mg/I	mg/I	mg/I	
Requirements as per MINAS noems (Minimum National Standards)		6.0-8.5	Max 5.0 mg/l	Max 0.35 mg/l	Max 0.5 mg/l	Max 125 mg/l	Max 15.0 mg/l	
S.No	Sample Details	Test Results						
1	Digboi River Water in Kenduguri Area	6.7	3.9	0.19	0.11	66	10	
2	Digboi River Water (15 km away from Digboi Refinery on Digboi	6.9	4.1	0.14	BDL	44	8	
3	Digboi River Water (26 km away from Digboi Refinery on Digboi	6.9	3.3	0.12	BDL	38	9	
4	Dihing River water before confluence with Digboi river	7.2	2.6	0.06	BDL	48	8	
5	Dihing River water after confluence with Digboi river	7.2	1.1	0.07	BDL	42	6	

^{***}BDL = Below Detection Limit

Tested & Report by: -B CHAKRABORTY (JQCA) Inter Com Water Lab No:-3592 Test Report Released By :-Dr. Gopal Maurya (QCM) Inter Com No:-3593

brepulyo

5

गुणवत्ता नियंत्रण विभाग (QUALITY CONTROL DEPARTMENT) इंडियन ऑयल कॉपेरिशन लिमिटेड(INDIAN OIL CORPORATION LIMITED) (असम ऑयल डिवीजन (ASSAM OIL DIVISION)

हिंगबोई रिफाइनरी, असम(DIGBOI REFINERY, ASSAM)

	Analysis Lab Report of D	ihing and	Digboi Ri	ivers					
	Source: Dihing ar	nd Digboi F	Rivers						
रिपोर्ट संख्या/ Report No.:DR/QC/July-2023				Dated 22.07.2023					
	Dated of sample Coll	ection :-17	7.07.2023			122	42		
PARAMETER		pH	Oil & Greese	Phenol	Sulphide	COD	BOD (3 Days) @ 27°(
Test Method		IS 3025 (Pert 11)	APHA-5520-8	APHA-5530- D	15 3025 (Part 29)	APHA- 5220-B	IS-3025 PART 44		
Unit			mg/I	mg/l	mg/I	mg/I	mg/I		
Requirements as per MINAS noems (Minimum National Standards)		6.0-8.5	Max 5.0 mg/l	Max 0.35 mg/l	Max 0.5 mg/l	Max 125 mg/l	Max 15.0 mg/l		
S.No	Sample Details	Test Results							
1	Digboi River Water in Kenduguri Area	6.7	3.6	0.09	0.08	76	12.0		
2	Digboi River Water (15 km away from Digboi Refinery on Digboi	6.4	2.8	0.01	BDL	64	8.0		
3	Digboi River Water (26 km away from Digboi Refinery on Digboi	6.7	3.2	BDL	BDL	42	10.0		
4	Dihing River water before confluence with Digboi river	6.9	1.4	BDL	BDL	56	8.0		

7.2

Tested & Report by: -B CHAKRABORTY (JQCA) Inter Com Water Lab No:-3592 Test Report Released By :-Dr. Gopal Maurya (QCM) Inter Com No:-3593

brepulyto

BDL

BDL

46

8.0

1

Dihing River water after confluence with Digboi river

***BDL = Below Detection Limit

गुणवत्ता नियंत्रण विभाग (QUALITY CONTROL DEPARTMENT) इंडियन ऑयल कॉपॉरेशन लिमिटेड(INDIAN OIL CORPORATION LIMITED) (असम ऑयल डिवीजन (ASSAM OIL DIVISION)

हिंगबोई रिफाइनरी, असम(DIGBOI REFINERY, ASSAM)

		· Property of the Control	D: 1 : D:	KOONGO SON			
	Analysis Lab Report of D		-	ivers			
	Source: Dihing ar	nd Digboi F	Rivers				
	रिपोर्ट संख्या/ Report No.:DR/QC/AUST-20	23			Dated 2	1.08.202	3
	Dated of sample Col	lection :-18	3.08.2023			12	48
	PARAMETER	рН	Oil & Greese	Phenol	Sulphide	COD	BOD (3 Days) @ 27°(
	Test Method	IS 3025 (Part 11)	APHA-5520-B	APHA-5530- D	IS 3025 (Part 29)	APHA- 5220-B	IS-3025 PART 44
	Unit		mg/l	mg/l	mg/l	mg/I	mg/I
Require	ements as per MINAS noems (Minimum National Standards)	6.0-8.5	Max 5.0 mg/l	Max 0.35 mg/l	Max 0.5 mg/l	Max 125 mg/l	Max 15.0 mg/l
S.No	Sample Details			Test Re	sults	01.	0.
1	Digboi River Water in Kenduguri Area	6.7	2.5	0.14	0.1	47	8.0
2	Digboi River Water (15 km away from Digboi Refinery on Digboi	6.8	1.8	0.1	BDL	42	7.0
3	Digboi River Water (26 km away from Digboi Refinery on Digboi	6.8	0.9	0.06	BDL	34	6.0
4	Dihing River water before confluence with Digboi river	7.2	0.4	0.02	BDL	25	4.0
5	Dihing River water after confluence with Digboi river	7.1	0.6	0.04	BDL	38	6.0

^{***}BDL = Below Detection Limit

Tested & Report by: -Dipankar Rajkhowa (JQCA) Inter Com Water Lab No:-3592 Test Report Released By :-Dr. Gopal Maurya (QCM) Inter Com No:-3593

brepulyo

गुणवत्ता नियंत्रण विभाग (QUALITY CONTROL DEPARTMENT) इंडियन ऑयल कॉपॉरेशन लिमिटेड(INDIAN OIL CORPORATION LIMITED) (असम ऑयल डिवीजन (ASSAM OIL DIVISION)

हिंगबोई रिफाइनरी, असम(DIGBOI REFINERY, ASSAM)

	Analysis Lab Report of D	ihing and	l Digboi R	ivers			
	Source: Dihing an	nd Digboi F	Rivers				
	रिपोर्ट संख्या/ Report No.:DR/QC/SEPT-20	23			Dated 29	9.09.202	3
	Dated of sample Col	lection :-13	3.09.2023			420	420
	PARAMETER	рН	Oil & Grease	Phenol	Sulphide	COD	BOD (3 Days) @ 27°
	Test Method	IS 3025 (Part 11)	APHA-5520-8	APHA-5530- D	IS 3025 (Part 29)	APHA- 5220-B	IS-3025 PART 44
	Unit		mg/I	mg/l	mg/I	mg/I	mg/I
Require	ements as per MINAS noems (Minimum National Standards)	6.0-8.5	Max 5.0 mg/l	Max 0.35 mg/l	Max 0.5 mg/l	Max 125 mg/l	Max 15.0 mg/l
S.No	Sample Details			Test Re	esults		
1	Digboi River Water in Kenduguri Area	6.9	3	0.08	0.07	70	12.0
2	Digboi River Water (15 km away from Digboi Refinery on Digboi	7	2.1	0.01	BDL	55	7.0
3	Digboi River Water (26 km away from Digboi Refinery on Digboi	7	1.2	BDL	BDL	41	6.0
4	Dihing River water before confluence with Digboi river	7.1	1	BDL	BDL	38	5.0
5	Dihing River water after confluence with Digboi river	7.2	0.9	BDL	BDL	32	6.0

^{***}BDL = Below Detection Limit

Tested & Report by: -B CHAKRABORTY (JQCA) Inter Com Water Lab No:-3592 Test Report Released By :-Dr. Gopal Maurya (QCM) Inter Com No:-3593

brepulyo

			ANN	EXURE-3				
		COMPLIANC	E OF EFFLUE	ENT STANDAR	RDS (In Kg/	TMT of Crude	e)	
	Fi	rom April, 202	23 to Septem	ber,2023(Sour	ce-External A	gency)		
Parameters	Limits	April	May	June	July	August	September	Average
pH		-			4	-	-	-
Oil & Grease	2.0	0.00	0.00	0.00	0.00	0.00	0.00	0.000
BOD	6.0	0.00	0.00	0.00	0.00	0.00	0.00	0.000
COD	50	0.00	0.00	0.00	0.00	0.00	0.00	0.000
TSS	8.0	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Phenols	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Sulphides	0.2	0.00	0.00	0.00	0.00	0.00	0.00	0.000
CN	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Ammonia as N	6.0	0.00	0.00	0.00	0.00	0.00	0.00	0.000
TKN	16	0.00	0.00	0.00	0.00	0.00	0.00	0.000
P	1.2	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Cr (Hexavalent)	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Cr (Total)	0.8	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Pb	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Нд	0.004	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Zn	2.0	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Ni	0.4	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Cu	0.4	0.00	0.00	0.00	0.00	0.00	0.00	0.000
V	8.0	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Benzene	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Benzo (a) -Pyrene	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.000

NB:- ND; Not Done & BDL; Bellow Detection Level

Remarks

No effluent Discharged outside ETP

Checked by:

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0138
	Report Date : 16.06.2023
'INDIAN OIL CORPORATION LIMITED'	Sample No.: MSKGL/ED/2023-24/05/02064
Assam Oil Division, Digboi, P.ODigboi, Assam-786171	Sample Description : Stack Emission
1.0. Diguot Assam 70011	Date of Sampling: 16.05.2023

ANALYSIS RESULT

A.	General information about stack :						
1.	Stack connected to : 0	CPP (HRSC	G-1)				
2.	Emission due to : I	Fuel Gas					
3.	Material of construction of Stack : 0	Carbon Stee	el (CS)				
4.	Shape of Stack : 0	Circular					
5.	Whether Stack is provided with permanent platform	& ladder :	Yes				
B.	Physical characteristics of stack :						
1.		Height of the Stack from ground level : 50.0 m					
2.	Diameter of the stack at sampling point : 2.0 m						
3.		3.14 m ²					
3.	Analysis/Characteristic of stack:	J. 14 III					
C.	Fuel Used : Gas						
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method			
1.	Temperature of emission (°C)	145.0		IS 14988 (P-1): 2001 (RA 2012			
2.	Barometric Pressure (mm of Hg)	750.0		USEPA Part-2, 25/09/1996			
3.	Velocity of gas (m/sec.)	15.6		IS 14988 (P-1): 2001 (RA 2012			
4.	Quantity of Gas Flow (Nm3/hr.)	123257		USEPA Part-2, 25/09/1996			
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	****	IS 13270: 1992 (RA 2014)			
6.	Concentration of Sulphur Dioxide (mg/Nm3)	43.5	50 (mg/Nm3)	USEPA Part-6, 25/09/1996			
7.	Concentration of Nitrogen Oxide (mg/Nm3)	87.1	350 (mg/Nm3)	USEPA Part-7, 12/03/1996			
8.	Concentration of Particulate Matters (mg/Nm3)	7.9	10 (mg/Nm3)	USEPA Part-17, 16/08/1996			
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (P-4): 2006			
E.	Pollution control device						
	Pollution control device attached with the stack : Y	es					
F.	Remarks:						
	134111111111111111111111111111111111111						

For Mitra S. K. Private Limited

Report Prepared By :

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:

Report No.: MSK/GHY/2023-24/0139

'INDIAN OIL CORPORATION LIMITED'

Report Date: 16.06.2023

Assam Oil Division, Digboi, P.O.-Digboi, Assam-786171 Sample No.: MSKGL/ED/2023-24/05/02065

Sample Description : Stack Emission

Date of Sampling: 16.05.2023

Ref. No. & Date: DRE2184081/25834730, Dtd.-20/02/2019

ANALYSIS RESULT

A.	General information about stack :					
1.	Stack connected to	Stack connected to : CPP (HRSG-4)				
2.	Emission due to	Fuel Gas				
3.	Material of construction of Stack	: Carbon Steel (CS)				
4.	Shape of Stack	Circular				
5.	Whether Stack is provided with permanent platform	& ladder :	Yes			
B.	Physical characteristics of stack :					
1.	Height of the Stack from ground level	60.0 m				
2.		3.0 m				
3.		7.065 m ²				
c.	Analysis/Characteristic of stack: Fuel Used : Gas					
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method		
1.	Temperature of emission (°C)	131.0		IS 14988 (P-1): 2001 (RA 2012		
2.	Barometric Pressure (mm of Hg)	750.0	1464	USEPA Part-2, 25/09/1996		
3.	Velocity of gas (m/sec.)	18.0		IS 14988 (P-1): 2001 (RA 2012		
4.	Quantity of Gas Flow (Nm3/hr.)	332564	****	USEPA Part-2, 25/09/1996		
5.	Concentration of Carbon Monoxide (% v/v)	< 0.2		IS 13270: 1992 (RA 2014)		
6.	Concentration of Sulphur Dioxide (mg/Nm3)	41.3	50 (mg/Nm3)	USEPA Part-6, 25/09/1996		
7.	Concentration of Nitrogen Oxide (mg/Nm3)	84.7	350 (mg/Nm3)	USEPA Part-7, 12/03/1996		
8.	Concentration of Particulate Matters (mg/Nm3)	7.5	10 (mg/Nm3)	USEPA Part-17, 16/08/1996		
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	< 5.0	150 (mg/Nm3)	IS 11255 (P-4): 2006		
E.	Pollution control device Pollution control device attached with the stack : Y	es	· · · · · · · · · · · · · · · · · · ·			
F.	Remarks:					

For Mitra S. K. Private Limited

Report Prepared By :

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:

Report No.: MSK/GHY/2023-24/0140

Report Date: 16.06.2023

'INDIAN OIL CORPORATION LIMITED'
Assam Oil Division, Digboi,
P.O.-Digboi, Assam-786171

Sample No.: MSKGL/ED/2023-24/05/02066

Sample Description: Stack Emission
Date of Sampling: 18.05.2023

Ref. No. & Date: DRE2184081/25834730, Dtd.-20/02/2019

A. General information about stack :

ANALYSIS RESULT

n.	General information about stack .			
1.	Stack connected to	HGU		
2.	Emission due to	Fuel Gas		
3.	Material of construction of Stack	Carbon Ste	el (CS)	
4.	Shape of Stack	Circular		
5.	Whether Stack is provided with permanent platform	n & ladder :	Yes	
B.	Physical characteristics of stack :			
1.	Height of the Stack from ground level	40.0 m		
2.	Diameter of the stack at sampling point	1.0 m		
3.	Area of Stack	0.785 m ²		
C.	Analysis/Characteristic of stack: Fuel Used : Gas			
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method
1.	Temperature of emission (°C)	135.0		IS 14988 (P-1): 2001 (RA 2012
2.	Barometric Pressure (mm of Hg)	750.0	****	USEPA Part-2, 25/09/1996
3.	Velocity of gas (m/sec.)	13.7		IS 14988 (P-1): 2001 (RA 2012
4.	Quantity of Gas Flow (Nm3/hr.)	27702		USEPA Part-2, 25/09/1996
5.	Concentration of Carbon Monoxide (% v/v)	<0.2		IS 13270: 1992 (RA 2014)
6.	Concentration of Sulphur Dioxide (mg/Nm3)	29.1	50 (mg/Nm3)	USEPA Part-6, 25/09/1996
7.	Concentration of Nitrogen Oxide (mg/Nm3)	75.0	350 (mg/Nm3)	USEPA Part-7, 12/03/1996
8.	Concentration of Particulate Matters (mg/Nm3)	5.3	10 (mg/Nm3)	USEPA Part-17, 16/08/1996
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (P-4): 2006
E.	Pollution control device Pollution control device attached with the stack : Y	es	No. of the last of	
F.	Remarks:			

For Mitra S. K. Private Limited

Report Prepared By :

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0141
	Report Date : 16.06.2023
'INDIAN OIL CORPORATION LIMITED'	Sample No.: MSKGL/ED/2023-24/05/02067
Assam Oil Division, Digboi, P.ODigboi, Assam-786171	Sample Description : Stack Emission
F.ODiguot, Assam-1991/1	Date of Sampling: 18.05.2023

ANALYSIS RESULT

A.	General information about stack :					
1.	Stack connected to : HDTU					
2.	Emission due to :1	Fuel Gas				
3.	Material of construction of Stack : 0	Carbon Stee	el (CS)			
4.	Shape of Stack : 0	Circular				
5.	Whether Stack is provided with permanent platform	n & ladder :	Yes			
B.	Physical characteristics of stack :	(*)				
1.	Height of the Stack from ground level : 40.0 m					
2.	Diameter of the stack at sampling point : 1.16 m					
3.		1.057 m ²				
C.	Analysis/Characteristic of stack: Fuel Used : Gas					
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method		
1.	Temperature of emission (°C)	330.0	344	IS 14988 (P-1): 2001 (RA 2012) (C		
2.	Barometric Pressure (mm of Hg)	750.0		USEPA Part 2 - 25/09/1996 (O)		
3.	Velocity of gas (m/sec.)	24.4		IS 11255 (Part III),2008RA 2018_(C		
4.	Quantity of Gas Flow (Nm3/hr.)	44848	****	USEPA Part 2 - 25/09/1996_(O)		
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	****	IS 13270 : 1992		
6.	Concentration of Sulphur Dioxide (mg/Nm3)	32.7	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996_(O)		
7.	Concentration of Nitrogen Oxide (mg/Nm3)	78.9	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996_(O)		
8.	Concentration of Particulate Matters (mg/Nm3)	5.7	10 (mg/Nm3)	USEPA-17 16/08/1996_(O)		
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (Part 4): 2006		
E.		es/es				
F.	Remarks:					

For Mitra S. K. Private Limited

Report Prepared By :

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0142
	Report Date: 16.06.2023
'INDIAN OIL CORPORATION LIMITED'	Sample No.: MSKGL/ED/2023-24/05/02068
Assam Oil Division, Digboi, P.ODigboi, Assam-786171	Sample Description : Stack Emission
G	Date of Sampling: 18.05.2023

ANALYSIS RESULT

A.	General information about stack :					
1.	Stack connected to	DCU				
2.	Emission due to	Fuel Gas				
3.	Material of construction of Stack	: Carbon Steel (CS)				
4	Shape of Stack :	: Circular				
5.	Whether Stack is provided with permanent platform	m & ladder	Yes			
B.	Physical characteristics of stack :					
1.		58 m				
2.		1.686 m				
3		2.2335 m ²				
	Analysis/Characteristic of stack:	2.2000 111				
C.	Fuel Used : Gas					
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method		
1.	Temperature of emission (°C)	190.0	434	IS 14988 (P-1): 2001 (RA 2012) (O		
2.	Barometric Pressure (mm of Hg)	750.0		USEPA Part 2 - 25/09/1996 (O)		
3.	Velocity of gas (m/sec.)	21.3	****	IS 11255 (Part III),2008RA 2018_(C		
4.	Quantity of Gas Flow (Nm3/hr.)	107678		USEPA Part 2 - 25/09/1996_(O)		
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	****	IS 13270 : 1992		
6.	Concentration of Sulphur Dioxide (mg/Nm3)	34.1	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996_(O)		
7.	Concentration of Nitrogen Oxide (mg/Nm3)	85.0	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996 (O)		
8.	Concentration of Particulate Matters (mg/Nm3)	6.2	10 (mg/Nm3)	USEPA-17 16/08/1996_(O)		
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (Part 4): 2006		
E.	Pollution control device Pollution control device attached with the stack : \	es es				
F.	Remarks:					

For Mitra S. K. Private Limited

Report Prepared By :

Authorised Signatory

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0143
	Report Date : 16.06.2023
'INDIAN OIL CORPORATION LIMITED'	Sample No.: MSKGL/ED/2023-24/05/02069
Assam Oil Division, Digboi, P.ODigboi, Assam-786171	Sample Description : Stack Emission
Troi Diguoti Assauli 1997 I	Date of Sampling: 19.05.2023

ANALYSIS RESULT

A.	General information about stack :			
1.	Stack connected to	: MSQU		
2.	Emission due to	: Fuel Gas		
3.	Material of construction of Stack	: Carbon Stee	I (CS)	
4.	Shape of Stack	: Circular		
5.	Whether Stack is provided with permanent plat	form & ladder :	Yes	
B.	Physical characteristics of stack :			
1.	Height of the Stack from ground level	: 40.0 m		
-		: 1.10 m		
2	Diameter of the stack at sampling point	: 0.95 m ²		
3,	Area of Stack	: 0.95 m		
c.	Analysis/Characteristic of stack: Fuel Used : Gas			
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method
1.	Temperature of emission (°C)	230.0	1441	IS 14988 (P-1): 2001 (RA 2012) (O
2.	Barometric Pressure (mm of Hg)	750.0		USEPA Part 2 - 25/09/1996 (O)
3.	Velocity of gas (m/sec.)	21.9		IS 11255 (Part III),2008RA 2018_(O
4.	Quantity of Gas Flow (Nm3/hr.)	43368	1404	USEPA Part 2 - 25/09/1996_(O)
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	****	IS 13270 : 1992
6.	Concentration of Sulphur Dioxide (mg/Nm3)	25.7	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996_(O)
7.	Concentration of Nitrogen Oxide (mg/Nm3)	68.5	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996_(O)
8.	Concentration of Particulate Matters (mg/Nm3)	4.9	10 (mg/Nm3)	USEPA-17 16/08/1996_(O)
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (Part 4): 2006
E.	Pollution control device Pollution control device attached with the stace	k : Yes		
F.	2-1			

For Mitra S. K. Private Limited

Authorised Signatory

Report Prepared By :

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No. : MSK/GHY/2023-24/0144		
UNDER OUR CORPORATION LIMITED	Report Date: 16.06.2023 Sample No.: MSKGL/ED/2023-24/05/02070		
'INDIAN OIL CORPORATION LIMITED'			
Assam Oil Division, Digboi, P.ODigboi, Assam-786171	Sample Description : Stack Emission		
1.ODiguot, Assam-760171	Date of Sampling: 20.05.2023		

ANALYSIS RESULT

A.	General information about stack :			
1.	Stack connected to : OBSG (CRU)			
2	Emission due to	: Fuel Gas &	Natural Gas	
3.	Material of construction of Stack	: Carbon Stee	el (CS)	
4.	Shape of Stack	: Circular		
5.	Whether Stack is provided with permanent plat	form & ladder :	Yes	
B.	Physical characteristics of stack :			
1.	Height of the Stack from ground level	: 45.0 m		
2.	Diameter of the stack at sampling point	: 1.750 m		
3.	Area of Stack	: 2.404 m ²		
3.	Analysis/Characteristic of stack:	, 2,404 111		
C.	Fuel Used : Gas			
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method
1.	Temperature of emission (°C)	160.0	****	IS 14988 (P-1): 2001 (RA 2012) (O
2.	Barometric Pressure (mm of Hg)	750.0	****	USEPA Part 2 - 25/09/1996 (O)
3.	Velocity of gas (m/sec.)	18.4		IS 11255 (Part III),2008RA 2018_(O
4.	Quantity of Gas Flow (Nm3/hr.)	107376		USEPA Part 2 - 25/09/1996_(O)
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	1119	IS 13270 : 1992
6.	Concentration of Sulphur Dioxide (mg/Nm3)	37.5	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996_(O)
7.	Concentration of Nitrogen Oxide (mg/Nm3)	73.9	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996 (O)
8.	Concentration of Particulate Matters (mg/Nm3)	6.8	10 (mg/Nm3)	USEPA-17 16/08/1996_(O)
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (Part 4): 2006
E.	Pollution control device			
_	Pollution control device attached with the stack	: Yes		
F.	Remarks:			

For Mitra S. K. Private Limited

Report Prepared By :

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer :

Report No.: MSK/GHY/2023-24/0145

'INDIAN OIL CORPORATION LIMITED'

Report Date: 16.06.2023

Assam Oil Division, Digboi, P.O.-Digboi, Assam-786171 Sample No.: MSKGL/ED/2023-24/05/02071

Sample Description : Stack Emission

Date of Sampling: 20.05.2023

Ref. No. & Date : DRE2184081/25834730, Dtd.-20/02/2019

ANALYSIS RESULT

A.	General information about stack :			
1.	Stack connected to	CRU (HDT)		
2.	Emission due to	Fuel Gas &	Natural Gas	
3.	Material of construction of Stack	Carbon Stee	I (CS)	
4.	Shape of Stack	Circular		
5.	Whether Stack is provided with permanent platform	n & ladder :	Yes	
B.	Physical characteristics of stack :			
1.	Height of the Stack from ground level	40.0 m		
2.		1.10 m		
3	# # # # # # # # # # # # # # # # # # #	0.950 m ²		
C.	Analysis/Characteristic of stack: Fuel Used : Gas			
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method
1.	Temperature of emission (°C)	212.0		IS 14988 (P-1) : 2001 (RA 2012) (O
2	Barometric Pressure (mm of Hg)	750.0		USEPA Part 2 - 25/09/1996 (O)
3.	Velocity of gas (m/sec.)	19.3	1111	IS 11255 (Part III),2008RA 2018 (O
4	Quantity of Gas Flow (Nm3/hr.)	39755		USEPA Part 2 - 25/09/1996 (O)
5.	Concentration of Carbon Monoxide (% v/v)	< 0.2	****	IS 13270 : 1992
6.	Concentration of Sulphur Dioxide (mg/Nm3)	26.1	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996 (O)
7.	Concentration of Nitrogen Oxide (mg/Nm3)	71.3	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996 (O)
8.	Concentration of Particulate Matters (mg/Nm3)	5.4	10 (mg/Nm3)	USEPA-17 16/08/1996_(O)
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (Part 4): 2006
E.	Pollution control device Pollution control device attached with the stack:	Yes		
F.	Remarks:			

For Mitra S. K. Private Limited

Report Prepared By :

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0146		
INDIAN OIL CORROBATION	Report Date: 16.06.2023 Sample No.: MSKGL/ED/2023-24/05/02072 Sample Description: Stack Emission		
'INDIAN OIL CORPORATION LIMITED' Assam Oil Division, Digboi,			
P.ODigboi, Assam-786171			
	Date of Sampling: 20.05.2023		
Ref. No. & Date : DRE2184081/25834730, Dtd2	0/02/2019		

ANALYSIS RESULT

A.	General information about stack :			
1.	Stack connected to	SDU		
2.	Emission due to	Fuel Gas &	Natural Gas	
3.	Material of construction of Stack	Carbon Stee	I (CS)	
4.	Shape of Stack	Circular		
5.	Whether Stack is provided with permanent platform	n & ladder :	Yes	
B.	Physical characteristics of stack :			
1.		46 m		
2		1.38 m		
3		1.4963 m ²		
	Analysis/Characteristic of stack:	1.4000.111		
C.	Fuel Used : Gas			
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method
1.	Temperature of emission (°C)	180.0		IS 14988 (P-1): 2001 (RA 2012)_(O
2.	Barometric Pressure (mm of Hg)	750.0	****	USEPA Part 2 - 25/09/1996_(O)
3.	Velocity of gas (m/sec.)	20.3		IS 11255 (Part III),2008RA 2018_(O
4.	Quantity of Gas Flow (Nm3/hr.)	70535		USEPA Part 2 - 25/09/1996_(O)
5.	Concentration of Carbon Monoxide (% v/v)	<0.2		IS 13270 : 1992
6.	Concentration of Sulphur Dioxide (mg/Nm3)	33.5	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996_(O)
7.	Concentration of Nitrogen Oxide (mg/Nm3)	81.6	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996 (O)
8.	Concentration of Particulate Matters (mg/Nm3)	7.8	10 (mg/Nm3)	USEPA-17 16/08/1996_(O)
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (Part 4): 2006
E.		Yes		
F.	Remarks:			

For Mitra S. K. Private Limited

Report Prepared By :

Authorised Signatory

The results relate only to the item(s) tested.

Thus Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:

Report No.: MSK/GHY/2023-24/0147

Report Date : 16.06.2023

'INDIAN OIL CORPORATION LIMITED' Assam Oil Division, Digboi, P.O.-Digboi, Assam-786171

Sample No.: MSKGL/ED/2023-24/05/02073

Sample Description : Stack Emission

Date of Sampling: 20.05.2023

Ref. No. & Date : DRE2184081/25834730, Dtd.-20/02/2019

ANALYSIS RESULT

A.	General information about stack :			
1.	Stack connected to AVU (CDU/VDU)			
2.	Emission due to	Fuel Gas		
3.	Material of construction of Stack	Carbon Stee	I (CS)	
4.	2277 0772 277 077	Circular		
5.	Whether Stack is provided with permanent platform & ladder : Yes			
B.	Physical characteristics of stack :			
1.	Height of the Stack from ground level	46.5 m		
2.		1.59 m		
3.		1.9864 m ²		
c.	Analysis/Characteristic of stack: Fuel Used : Gas			
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method
1.	Temperature of emission (°C)	180.0	****	IS 14988 (P-1): 2001 (RA 2012) (O
2.	Barometric Pressure (mm of Hg)	750.0	****	USEPA Part 2 - 25/09/1996 (O)
3.	Velocity of gas (m/sec.)	20.3	1414	IS 11255 (Part III),2008RA 2018 (C)
4.	Quantity of Gas Flow (Nm3/hr.)	70535		USEPA Part 2 - 25/09/1996 (O)
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	****	IS 13270 : 1992
6.	Concentration of Sulphur Dioxide (mg/Nm3)	33.5	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996 (O)
7.	Concentration of Nitrogen Oxide (mg/Nm3)	81.6	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996 (O)
8.	Concentration of Particulate Matters (mg/Nm3)	7.8	10 (mg/Nm3)	USEPA-17 16/08/1996 (O)
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (Part 4): 2006
E.	Pollution control device Pollution control device attached with the stack:	Yes		
F.	Remarks:			

For Mitra S. K. Private Limited

Report Prepared By :

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No. : MSK/GHY/2023-24/0265			
'INDIAN OIL CORPORATION LIMITED' Assam Oil Division, Digboi,	Report Date: 16.08.2023			
	Sample No.: MSKGL/ED/2023-24/08/00298 Sample Description: Stack Emission			
P.ODigboi, Assam-786171				
	Date of Sampling: 28.07.2023			
Ref. No. & Date : DRE2184081/25834730, Dtd20	0/02/2019			

ANALYSIS RESULT

A.	General information about stack :			
1.	Stack connected to : CPP (HRSG-4)			
2.	Emiliate at a s			
3.	Managed at the second s	Carbon Ste	ant (CS)	
4.	01 101	Circular	ser (CS)	
5.	Whether Stack is provided with permanent platfor	m & Inddox	. V	
6.	DG CAPACITY : NIL	iii & lauger	res	
B.	Physical characteristics of stack :			
1.	The bar on the	60.0 m		
2.	Diameter of the state of the	3.0 m		
3.	A	7.065 m ²		
C.	Analysis/Characteristic of stack: Fuel Used : Gas			
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method
1.	Temperature of emission (°C)	130.0		16 14000 (D.1) 2001 (D.1 2011
2.	Barometric Pressure (mm of Hg)	754.0	100	IS 14988 (P-1): 2001 (RA 2012
3.	Velocity of gas (m/sec.)	14.3	1000	USEPA Part-2, 25/09/1996
4.	Quantity of Gas Flow (Nm3/hr.)	263753	****	IS 14988 (P-1): 2001 (RA 2012 USEPA Part-2, 25/09/1996
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	1913	IS 13270 : 1992 (RA 2014)
6.	Concentration of Sulphur Dioxide (mg/Nm3)	42.5	50 (mg/Nm3)	USEPA Part-6, 25/09/1996
	Composition Chillian III	85.1	350 (mg/Nm3)	The state of the s
7.	Concentration of Nitrogen Oxide (mg/Nm3)	00.1		
	Concentration of Nitrogen Oxide (mg/Nm3) Concentration of Particulate Matters (mg/Nm3)	7.8		USEPA Part-7, 12/03/1996
B. 9.	Concentration of Particulate Matters (mg/Nm3) Concentration of Hydrogen Sulphide (mg/Nm3)		10 (mg/Nm3)	USEPA Part-17, 16/08/1996
7. 8. 9. E.	Concentration of Nitrogen Oxide (mg/Nm3) Concentration of Particulate Matters (mg/Nm3) Concentration of Hydrogen Sulphide (mg/Nm3) Pollution control device Pollution control device attached with the stack: Yes	7.8 <5.0		

For Mitra S. K. Private Limited

Report Prepared By :

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016, West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

Name & Address of the Customer :	Report No.: MSK/GHY/2023-24/0266		
'INDIAN OIL CORPORATION LIMITED'	Report Date: 16.08.2023 Sample No.: MSKGL/ED/2023-24/08/00299 Sample Description: Stack Emission		
Assam Oil Division, Digboi,			
P.ODigboi, Assam-786171			
	Date of Sampling: 28.07.2023		
Ref. No. & Date : DRE2184081/25834730, Dtd20	0/02/2019		

ANALYSIS RESULT

A.	General information about stack :			
1.	Stack connected to : CPP (HRSG-3)			
2.		nission due to ; Fuel Gas		
3.		Carbon Ste	nel (CS)	
4.	Chara of Di il	Circular	301 (00)	
5.	Whether Stack is provided with permanent platfor		· Vaa	
6.	DG CAPACITY : NIL	iii ox iauuei	. res	
B.	Physical characteristics of stack :		2000	
1.	Heleka fili on the	50.0 m		
2.	Discourse and the second	2.0 m		
3.	1	3.14 m ²		
C.	Analysis/Characteristic of stack: Fuel Used : Gas		A STATE OF THE PARTY OF THE PAR	The state of the s
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method
1.	Temperature of emission (°C)	146.0		IS 14988 (P-1): 2001 (RA 2012)
2.	Barometric Pressure (mm of Hg)	754.0	1000	USEPA Part-2, 25/09/1996
3.	Velocity of gas (m/sec.)	13.7		IS 14988 (P-1): 2001 (RA 2012)
4.	Quantity of Gas Flow (Nm3/hr.)	103861	****	USEPA Part-2, 25/09/1996
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	****	IS 13270 : 1992 (RA 2014)
6.	Concentration of Sulphur Dioxide (mg/Nm3)	43.8	50 (mg/Nm3)	USEPA Part-6, 25/09/1996
7.	Concentration of Nitrogen Oxide (mg/Nm3)	89.2	350 (mg/Nm3)	USEPA Part-7, 12/03/1996
8.	Concentration of Particulate Matters (mg/Nm3)	8.1	10 (mg/Nm3)	USEPA Part-17, 16/08/1996
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (P-4): 2006
E.	Pollution control device Pollution control device attached with the stack : You	es		7, 200
F.	Remarks:			

For Mitra S. K. Private Limited

Report Prepared By:

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

Name & Address of the Customer;	Report No. : MSK/GHY/2023-24/0267		
'INDIAN OIL CORPORATION LIMITED'	Report Date: 16.08.2023 Sample No.: MSKGL/ED/2023-24/08/00300 Sample Description: Stack Emission		
Assam Oil Division, Digboi,			
P.ODigboi, Assam-786171			
	Date of Sampling: 26.07.2023		
Ref. No. & Date : DRE2184081/25834730, Dtd20	0/02/2019		

ANALYSIS RESULT

A.	General information about stack :			
1.				
2.		Fuel Gas		
3.	No. 4 Co. 1 Co. 1	Carbon Ste	ol (CC)	
4.	01 (0)	Circular	iei (CS)	
5.	Whether Stack is provided with permanent platfor			No.
6.	DG CAPACITY : NIL	m & ladder	: Yes	
B.	The state of the s			
1.	11.7.14 (4) (4) (4)	40.0		
2.	Die i di	40.0 m		
3.	4 - 101 1	1.0 m : 0.785 m ²		
c.	Analysis/Characteristic of stack: Fuel Used : Gas			
D.	Test Parameters	Result	Perms, Limit as per MOEF notification, 2008	Method
1.	Temperature of emission (°C)	137.0		IS 14988 (P-1): 2001 (RA 2012
2.	Barometric Pressure (mm of Hg)	754.0		USEPA Part-2, 25/09/1996
3.	Velocity of gas (m/sec.)	15.8	****	IS 14988 (P-1): 2001 (RA 2012
4.	Quantity of Gas Flow (Nm3/hr.)	31963	****	USEPA Part-2, 25/09/1996
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	4444	IS 13270 : 1992 (RA 2014)
3.	Concentration of Sulphur Dioxide (mg/Nm3)	27.1	50 (mg/Nm3)	USEPA Part-6, 25/09/1996
7.	Concentration of Nitrogen Oxide (mg/Nm3)	74.2	350 (mg/Nm3)	USEPA Part-7, 12/03/1996
В.	Concentration of Particulate Matters (mg/Nm3)	5.7	10 (mg/Nm3)	USEPA Part-17, 16/08/1996
	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (P-4) : 2006
	concentration of Hydrogen Sulphide (mg/Nm.s)		(0	15 11233 (F=4) : Z(R)B
9. E.	Pollution control device Pollution control device attached with the stack : Ye	es		7 7 2000

For Mitra S. K. Private Limited

Report Prepared By:

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0371
'INDIAN OIL CORPORATION LIMITED' Assam Oil Division, Digboi, P.ODigboi, Assam-786171	Report Date : 26.09.2023
	Sample No.: MSKGL/ED/2023-24/09/00386
	Sample Description : Stack Emission
	Date of Sampling: 28.08.2023
Ref. No. & Date : DRE2184081/25834730, Dtd20	

ANALYSIS RESULT

A.	General information about stack :			
1.	Stack connected to : CRU (HDT)			
2.	P	THE RESERVE TO SHARE THE PARTY OF THE PARTY	k Natural Gas	
3.	The state of the s	Carbon Ste		
4.	0	Circular	,61 (00)	
5.	DO GARAGES	NIL		
6.	Whether Stack is provided with permanent platfo		· Vae	
B.	Physical characteristics of stack :	m widder	. 165	to the same of the
1.	Heleti III or iII	: 40.0 m		
2.	Dispositor of the standard or the	: 1.10 m		The second secon
3.	Area of Stack	: 0.950 m ²		
-	Analysis/Characteristic of stack:	. 0.950 m		
C.	Fuel Used : Fuel Gas/Natural Gas			
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method
1.	Temperature of emission (°C)	212.0		10 14000 (D.1) 2001 (D.1 2012)
2.	Barometric Pressure (mm of Hg)	754.0	****	IS 14988 (P-1): 2001 (RA 2012)_(O
3.	Velocity of gas (m/sec.)	18.7		USEPA Part 2 - 25/09/1996 (O) IS 11255 (Part III),2008RA 2018 (O
4.	Quantity of Gas Flow (Nm3/hr.)	38418	****	USEPA Part 2 - 25/09/1996 (O)
5.	Concentration of Carbon Monoxide (% v/v)	< 0.2	****	IS 13270 : 1992
6.	Concentration of Sulphur Dioxide (mg/Nm3)	26.5	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996 (O)
7.	Concentration of Nitrogen Oxide (mg/Nm3)	72.9	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996 (O)
8.	Concentration of Particulate Matters (mg/Nm3)	5.7	10 (mg/Nm3)	USEPA-17 16/08/1996 (O)
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (Part 4) : 2006
E.	Pollution control device Pollution control device attached with the stack: Y	'es		(* 10.5 1) . 2000

For Mitra S. K. Private Limited

Authorised Signatory

Report Prepared By:

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0372	
'INDIAN OIL CORPORATION LIMITED' Assam Oil Division, Digboi, P.ODigboi, Assam-786171	Report Date : 26.09.2023	
	Sample No.: MSKGL/ED/2023-24/09/00387	
	Sample Description : Stack Emission	
	Date of Sampling: 29.08.2023	

ANALYSIS RESULT

A.	General information about stack:			
1.	Stack connected to	HDTU		19070
2.	Emission due to	Fuel Gas		A B
3.	Material of construction of Stack	Carbon Ste	el (CS)	1
4.	Shape of Stack	Circular		
5.	DG CAPACITY	NIL		
6.	Whether Stack is provided with permanent platfor	m & ladder :	Yes	
B.	Physical characteristics of stack :			
1.		: 40.0 m		
2.		1 10 m		
3.		: 0.95 m ²		
C.	Analysis/Characteristic of stack:			
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method
1.	Temperature of emission (°C)	330.0		IS 14988 (P-1): 2001 (RA 2012) (O
2.	Barometric Pressure (mm of Hg)	754.0		USEPA Part 2 - 25/09/1996 (O)
3.	Velocity of gas (m/sec.)	20.3		IS 11255 (Part III),2008RA 2018 (O
4.	Quantity of Gas Flow (Nm3/hr.)	37605	****	USEPA Part 2 - 25/09/1996 (O)
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	****	IS 13270 : 1992
6.	Concentration of Sulphur Dioxide (mg/Nm3)	31.9	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996_(O)
7.	Concentration of Nitrogen Oxide (mg/Nm3)	77.3	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996 (O)
8.	Concentration of Particulate Matters (mg/Nm3)	5.3	10 (mg/Nm3)	USEPA-17 16/08/1996 (O)
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (Part 4): 2006
E.	Pollution control device Pollution control device attached with the stack:	/es	1	The state of the s
F.	Remarks:			

For Mitra S. K. Private Limited

Authorised Signatory

Report Prepared By:

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel. : 91 33 40143000 / 22650006 / 22650007 Fax : 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0373
'INDIAN OIL CORPORATION LIMITED' Assam Oil Division, Digboi, P.ODigboi, Assam-786171	Report Date : 26.09.2023
	Sample No.: MSKGL/ED/2023-24/09/00388
	Sample Description : Stack Emission
	Date of Sampling: 28.08.2023
Ref. No. & Date : DRE2184081/25834730, Dtd20	0/02/2019

ANALYSIS RESULT

A.	General information about stack :			AP 10 A
1.	Stack connected to : OBSG (CRU)			
2.	Emission due to	: Fuel Gas &	Natural Gas	A 8 A
3.	Material of construction of Stack	: Carbon Ste	el (CS)	
4.	Shape of Stack	: Circular		
5.	DG CAPACITY	: NIL		
6.	Whether Stack is provided with permanent pla	11.00	Voe	
B.	Physical characteristics of stack :	dom a ladder .	100	
1.	Height of the Stack from ground level	: 45.0 m		
2.	Diameter of the stack at sampling point	: 1.75 m		
3.	Area of Stack	: 2.404 m ²	MA	
C.	Analysis/Characteristic of stack: Fuel Used : Fuel Gas/Natural Gas			
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method
1.	Temperature of emission (°C)	160.0	****	IS 14988 (P-1) : 2001 (RA 2012) (O
2.	Barometric Pressure (mm of Hg)	754.0		USEPA Part 2 - 25/09/1996 (O)
3.	Velocity of gas (m/sec.)	17.3	****	IS 11255 (Part III),2008RA 2018 (O
4.	Quantity of Gas Flow (Nm3/hr.)	101175		USEPA Part 2 - 25/09/1996 (O)
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	****	IS 13270 : 1992
6.	Concentration of Sulphur Dioxide (mg/Nm3)	38.3	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996 (O)
7.	Concentration of Nitrogen Oxide (mg/Nm3)	75.1	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996 (O)
8.	Concentration of Particulate Matters (mg/Nm3)	7.3	10 (mg/Nm3)	USEPA-17 16/08/1996 (O)
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (Part 4): 2006
E.	Pollution control device Pollution control device attached with the stack	: Yes		2.00.00

For Mitra S. K. Private Limited

Report Prepared By :

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Hend Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Rond, Kolknta - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No. : MSK/GHY/2023-24/0374		
'INDIAN OIL CORPORATION LIMITED' Assam Oil Division, Digboi, P.ODigboi, Assam-786171	Report Date : 26.09.2023		
	Sample No.: MSKGL/ED/2023-24/09/00389		
	Sample Description : Stack Emission		
	Date of Sampling: 26.08.2023		
Ref. No. & Date : DRE2184081/25834730, Dtd20	1 0		

ANALYSIS RESULT

A.	General information about stack :			
1.	Stack connected to : AVU (CDU/VDU)			
2.	Emission due to	: Fuel Gas	District Mill	W W
3.	Material of construction of Stack	Carbon Ste	el (CS)	
4.	Shape of Stack	Circular		
5.	DG CAPACITY	NIL		
6.	Whether Stack is provided with permanent platfo	m & ladder :	Yes	
B.	Physical characteristics of stack :	111.01.0000001.		
1.	Height of the Stack from ground level	: 46.5 m		
2.	Diameter of the stack at sampling point	: 1.59 m		
3.	Area of Stack	: 1.9864 m ²		
C.	Analysis/Characteristic of stack: Fuel Used : Fuel Gas/Natural Gas			
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method
1.	Temperature of emission (°C)	127.0		IS 14988 (P-1): 2001 (RA 2012) (O
2.	Barometric Pressure (mm of Hg)	754.0		USEPA Part 2 - 25/09/1996 (O)
3.	Velocity of gas (m/sec.)	14.4	****	IS 11255 (Part III),2008RA 2018 (O
4.	Quantity of Gas Flow (Nm3/hr.)	75595	****	USEPA Part 2 - 25/09/1996 (O)
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	****	IS 13270 : 1992
6.	Concentration of Sulphur Dioxide (mg/Nm3)	37.5	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996 (O)
7.	Concentration of Nitrogen Oxide (mg/Nm3)	76.1	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996 (O)
8.	Concentration of Particulate Matters (mg/Nm3)	6.3	10 (mg/Nm3)	USEPA-17 16/08/1996 (O)
	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (Part 4): 2006
9.				
9. E.	Pollution control device Pollution control device attached with the stack : \	/es		

For Mitra S. K. Private Limited

Authorised Signatory

Report Prepared By :

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

Name & Address of the Customer:	Report No. : MSK/GHY/2023-24/0375
'INDIAN OIL CORPORATION LIMITED' Assam Oil Division, Digboi, P.ODigboi, Assam-786171	Report Date : 26.09.2023
	Sample No.: MSKGL/ED/2023-24/09/00390
	Sample Description : Stack Emission
	Date of Sampling: 29.08.2023
Ref. No. & Date : DRE2184081/25834730, Dtd20	The second secon

ANALYSIS RESULT

A.	General information about stack:			
1.	Stack connected to	: MSQU		
2.	Emission due to	: Fuel Gas		
3.	Material of construction of Stack	: Carbon Ste	el (CS)	
4.	Shape of Stack	: Circular		
5.	DG CAPACITY	: NIL		
6.	Whether Stack is provided with permanent pla	3.00	Von	
B.	Physical characteristics of stack :	morni a ladder	165	
1.	Height of the Stack from ground level	: 40.0 m		
2.	Diameter of the stack at sampling point	: 1.10 m		
3.	Area of Stack			
	Analysis/Characteristic of stack:	: 0.95 m ²		
C.	Fuel Used : Fuel Gas/Natural Gas			
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	
1.	Temperature of emission (°C)	230.0		IS 14988 (P-1): 2001 (RA 2012) (O
2.	Barometric Pressure (mm of Hg)	754.0		USEPA Part 2 - 25/09/1996 (O)
3.	Velocity of gas (m/sec.)	18.8	1272	IS 11255 (Part III),2008RA 2018 (O
4.	Quantity of Gas Flow (Nm3/hr.)	36868	111.1	USEPA Part 2 - 25/09/1996 (O)
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	****	IS 13270: 1992
6.	Concentration of Sulphur Dioxide (mg/Nm3)	24.6	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996_(O)
7.	Concentration of Nitrogen Oxide (mg/Nm3)	67.2	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996 (O)
8.	Concentration of Particulate Matters (mg/Nm3)	4.7	10 (mg/Nm3)	USEPA-17 16/08/1996 (O)
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (Part 4): 2006
E.	Pollution control device Pollution control device attached with the stack	k : Yes		1
F.	Remarks:			

For Mitra S. K. Private Limited

Authorised Signatory

Report Prepared By :

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0376
'INDIAN OIL CORPORATION LIMITED' Assam Oil Division, Digboi, P.ODigboi, Assam-786171	Report Date : 26.09.2023
	Sample No. : MSKGL/ED/2023-24/09/00391
	Sample Description : Stack Emission
	Date of Sampling: 28.08.2023
Ref. No. & Date : DRE2184081/25834730, Dtd20	0/02/2019

ANALYSIS RESULT

A.	General information about stack :							
1.	Stack connected to	DCU		4000				
2.	Emission due to : Fuel Gas							
3.	Material of construction of Stack	Carbon Ste	el (CS)					
4.		Circular						
5.	Whether Stack is provided with permanent platfor	m & ladder	· Yes					
В.	Physical characteristics of stack :							
1.	Height of the Stack from ground level	: 58 m						
2.		: 1.686 m		The same was				
3.		: 2.2335 m ²						
C.	Analysis/Characteristic of stack: Fuel Used : Fuel Gas/Natural Gas	M						
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method				
1.	Temperature of emission (°C)	189.0	****	IS 14988 (P-1) : 2001 (RA 2012) (O				
2.	Barometric Pressure (mm of Hg)	754.0	****	USEPA Part 2 - 25/09/1996 (O)				
3.	Velocity of gas (m/sec.)	17.1	****	IS 11255 (Part III),2008RA 2018 (C				
4.	Quantity of Gas Flow (Nm3/hr.)	87436	****	USEPA Part 2 - 25/09/1996 (O)				
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	****	IS 13270 : 1992				
6.	Concentration of Sulphur Dioxide (mg/Nm3)	33.5	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996 (O)				
7.	Concentration of Nitrogen Oxide (mg/Nm3)	84.1	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996 (O)				
8.	Concentration of Particulate Matters (mg/Nm3)	5.9	10 (mg/Nm3)	USEPA-17 16/08/1996 (O)				
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)					
E.	Pollution control device Pollution control device attached with the stack:	Yes						
F.	Remarks:							

For Mitra S. K. Private Limited

Report Prepared By :

Authorised Signatory

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No. : MSK/GHY/2023-24/0377		
'INDIAN OIL CORPORATION LIMITED' Assam Oil Division, Digboi,	Report Date : 26.09.2023		
	Sample No.: MSKGL/ED/2023-24/09/00392		
P.ODigboi, Assam-786171	Sample Description : Stack Emission		
	Date of Sampling: 29.08.2023		
Ref. No. & Date : DRE2184081/25834730, Dtd20			

ANALYSIS RESULT

A.	General information about stack :			
1.	Stack connected to	: SDU		
2.	Emission due to	Natural Gas		
3.	Material of construction of Stack	: Carbon Ste		
4.	Shape of Stack	: Circular	0. (00)	
5.	Whether Stack is provided with permanent platform	The state of the s	Vae	
B.	Physical characteristics of stack :	Ann or lauden	. 100	
1.	Height of the Stack from ground level	: 46 m	713	
2.	Diameter of the stack at sampling point	: 1.38 m		
3.	Area of Stack	: 1.4963 m ²		
C.	Analysis/Characteristic of stack: Fuel Used : Fuel Gas/Natural Gas		V	
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	
1.	Temperature of emission (°C)	182.0		IS 14089 (B.1) - 2001 (B.4. 2012) (CO.
2.	Barometric Pressure (mm of Hg)	754.0		IS 14988 (P-1): 2001 (RA 2012)_(O) USEPA Part 2 - 25/09/1996 (O)
3.	Velocity of gas (m/sec.)	17.8		IS 11255 (Part III),2008RA 2018 (O)
4.	Quantity of Gas Flow (Nm3/hr.)	59248	****	USEPA Part 2 - 25/09/1996 (O)
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	2221	IS 13270 : 1992
6.	Concentration of Sulphur Dioxide (mg/Nm3)	34.7	50 (mg/Nm3)	USEPA (Part 6) 25/09/1996 (O)
7.	Concentration of Nitrogen Oxide (mg/Nm3)	82.5	350 (mg/Nm3)	USEPA (Part 7), Issue Dated.12/03/1996 (O)
8.	Concentration of Particulate Matters (mg/Nm3)	8.1	10 (mg/Nm3)	USEPA-17 16/08/1996_(O)
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0		IS 11255 (Part 4) : 2006
-	Pollution control device		(grano)	10 11200 (Fait 4) : 2006
E.	Pollution control device attached with the stack :	Yes		

For Mitra S. K. Private Limited

gnatory

Authorised S

Report Prepared By :

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0378
'INDIAN OIL CORPORATION LIMITED' Assam Oil Division, Digboi, P.ODigboi, Assam-786171	Report Date : 26.09.2023
	Sample No.: MSKGL/ED/2023-24/09/00393
	Sample Description : Stack Emission
	Date of Sampling: 26.08.2023
Ref. No. & Date : DRE2184081/25834730, Dtd20	

ANALYSIS RESULT

A.	General information about stack:							
1.	Stack connected to	CPP (HRS	G-4)	407 10 400				
2.	Emission due to	470						
3.	Material of construction of Stack :	Carbon Ste	el (CS)	1 0 0				
4.	Shape of Stack	Circular						
5.	DG CAPACITY	NIL						
6.	Whether Stack is provided with permanent platform		Yes					
B.	Physical characteristics of stack :							
1.	The state of the s							
2.		3.0 m						
3.		7.065 m ²						
C.	Analysis/Characteristic of stack: Fuel Used : Natural Gas		A	A				
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method				
1.	Temperature of emission (°C)	130.0		IS 14988 (P-1): 2001 (RA 2012				
2.	Barometric Pressure (mm of Hg)	754.0		USEPA Part-2, 25/09/1996				
3.	Velocity of gas (m/sec.)	19.7	****	IS 14988 (P-1): 2001 (RA 2012				
4.	Quantity of Gas Flow (Nm3/hr.)	365021		USEPA Part-2, 25/09/1996				
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	****	IS 13270: 1992 (RA 2014)				
6.	Concentration of Sulphur Dioxide (mg/Nm3)	43.5	50 (mg/Nm3)	USEPA Part-6, 25/09/1996				
7.	Concentration of Nitrogen Oxide (mg/Nm3)	86.2	350 (mg/Nm3)	USEPA Part-7, 12/03/1996				
8.	Concentration of Particulate Matters (mg/Nm3)	8.1	10 (mg/Nm3)	USEPA Part-17, 16/08/1996				
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (P-4): 2006				
E.	Pollution control device Pollution control device attached with the stack : Y	me						
	onation control device attached with the stack . I	63						

For Mitra S. K. Private Limited

Report Prepared By :

Authoriscu Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0379			
'INDIAN OIL CORPORATION LIMITED' Assam Oil Division, Digboi,	Report Date : 26.09.2023			
	Sample No.: MSKGL/ED/2023-24/09/00394			
P.ODigboi, Assam-786171	Sample Description : Stack Emission			
	Date of Sampling: 26.08.2023			
Ref. No. & Date : DRE2184081/25834730, Dtd20	0/02/2019			

ANALYSIS RESULT

A.	General information about stack :			A 10					
1.	: CPP (HRSG-2)								
2.	Programme and the second secon	Fuel Gas							
3.		Carbon Ste	el (CS)						
4.	and the second s	Circular	(00)						
5.	DO CADACITY	NIL							
6.	Whether Stack is provided with permanent platfor	2.7.7.8.8 Mill.	· Vaa						
B.	Physical characteristics of stack :	iii o laudei	. 165						
1.	Halita for an analysis	50.0 m							
2.	Discourt of the state of	2.0 m							
3.		: 3.14 m ²							
C.	Analysis/Characteristic of stack: Fuel Used : Natural Gas	100							
D.	Test Parameters	Result	Perms. Limit as per MOEF notification, 2008	Method					
1.	Temperature of emission (°C)	147.0		IS 14988 (P-1): 2001 (RA 2012					
2.	Barometric Pressure (mm of Hg)	754.0	****	USEPA Part-2, 25/09/1996					
3.	Velocity of gas (m/sec.)	19.1	****	IS 14988 (P-1): 2001 (RA 2012					
4.	Quantity of Gas Flow (Nm3/hr.)	150636	****	USEPA Part-2, 25/09/1996					
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	****	IS 13270: 1992 (RA 2014)					
6.	Concentration of Sulphur Dioxide (mg/Nm3)	42.9	50 (mg/Nm3)	USEPA Part-6, 25/09/1996					
7.	Concentration of Nitrogen Oxide (mg/Nm3)	88.3	350 (mg/Nm3)	USEPA Part-7, 12/03/1996					
8.	Concentration of Particulate Matters (mg/Nm3)	8.3	10 (mg/Nm3)	USEPA Part-17, 16/08/1996					
9.	Concentration of Hydrogen Sulphide (mg/Nm3)	<5.0	150 (mg/Nm3)	IS 11255 (P-4): 2006					
E.	Pollution control device			10 1125 (1-1) 12000					
	Pollution control device attached with the stack: Y	es							

For Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) texted.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limit.

Head Office; Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0025				
"Indian Oil Corporation Limited Digboi" Assam Oil Division,	Report Date : 18.05.23				
	Sample Description : Ambient Air				
P.O Digboi, Assam - 786171	Sample Number : MSKGL/ED/2023-24/05/00039-00046				
Reference No.& Date: 27371982 Dated : 19/11/2021	Sampling Location : EFFLUENT TREATMENT PLANT				

ANALYSIS RESULT

SL. No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM 2.5 (μg/m ³)	SO ₂ (µg/m ³)	NO ₂ (µg/m ³)	CO (mg/m³)	Ο ₃ (μg/m³)	NH ₃ _ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)
1.	03.04.2023	59	31	9.6	25	1.5	24	12	<0.01	<5.0	<1.0	<4.2	<0.5
2.	06.04.2023	64	36	10.7	28	1.7	27	14	< 0.01	<5.0	<1.0	<4.2	<0.5
3.	10.04.2023	54	28	<6.0	14	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
4.	12.04.2023	57	27	8.6	21	1.4	20	10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	18.04.2023	51	27	<6.0	11	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
6.	21.04.2023	56	31	9.3	24	1.5	23	11	<0.01	<5.0	<1.0	<4.2	<0.5
7.	24.04.2023	48	25	<6.0	10	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
8.	27.04.2023	52	31	<6.0	15	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
	as per CPCB notification, New 8th Nov, 2009. for Ambient air quality	100	60	80	80	2	180	400	1	20	6	5	1
Sampling	g and Analysis done according to	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006	IS 5182 : (Part- 10) :1999	Air Sampling, 3 rd Edn. By James P. Lodge (Method-417)	3 rd Edn. By James P. Lodge	перра	USEPA 10-3.4	USEPA 10-3.4	IS 5182 : (Part 11) :2006	IS 5182 ; (Part 12) :2004

Report Prepared By:

A A

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0026					
"Indian Oil Corporation Limited Digboi"	Report Date : 18.05.23					
Assam Oil Division,	Sample Description : Ambient Air					
P.O Digboi, Assam - 786171	Sample Number : MSKGL/ED/2023-24/05/00047-00054					
Reference No.& Date: 27371982 Dated : 19/11/2021	Sampling Location : BAZAAR GATE					

ANALYSIS RESULT

SL. No.	Date of Monitoring	PM ₁₆ (μg/m ³)	PM 2.5 (µg/m ³)	SO ₂ (μg/m ³)	NO ₂ (µg/m ³)	CO (mg/m³)	Ο ₃ (μg/m³)	NH ₃ (μg/m ³)	Pb (µg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (μg/m³)	Benzo(a) pyrene (ng/m³)
1.	03.04.2023	72	38	11.4	25	1.7	24	12	<0.01	<5.0	<1.0	<4.2	<0.5
2.	06.04.2023	56	31	<6.0	14	1.3	<20	<10	< 0.01	<5.0	<1.0	<4.2	<0.5
3.	10.04.2023	69	33	9.6	26	1.5	22	11	<0.01	<5.0	<1.0	<4.2	<0.5
4.	12.04.2023	54	28	8.3	22	1.2	20	10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	18.04.2023	60	33	10.2	29	1.7	26	13	<0.01	<5.0	<1.0	<4.2	<0.5
6.	21.04.2023	52	27	<6.0	13	1.3	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
7.	24.04.2023	55	31	<6.0	14	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
8	27.04.2023	68	40	9.1	21	1.4	24	12	<0.01	<5.0	<1.0	<4.2	<0.5
Limit as per CPCB notification, New Delhi, 18th Nov. 2009. for Ambient sir quality		100	60	80	80	2	180	400	1	20	6	5	1
Sampling	and Analysis done according to	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006	IS 5182 : (Part- 10) :1999	Air Sampling, 3 rd Edn. By James P. Lodge (Method-417)	3 rd Edn. By James P. Lodge	USEPA IO-3.4	USEPA IO-3.4	USEPA 10-3.4	IS 5182 : (Part 11) :2006	IS 5182 : (Part 12) :2004

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0027
"Indian Oil Corporation Limited Digboi" Assam Oil Division,	Report Date: 18.05.23
	Sample Description : Ambient Air
P.O Digboi, Assam - 786171	Sample Number: MSKGL/ED/2023-24/05/00055-00062
Reference No.& Date: 27371982 Dated: 19/11/2021	Sampling Location : NEW TANK FIRM

ANALYSIS RESULT

SL. No.	Date of Monitoring	PM ₁₀ (μg/m³)	PM 2.5 (µg/m³)	SO ₂ (µg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)	Ο ₃ (μg/m³)	NH ₃ (µg/m ⁸)	Pb (µg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)
1.	03.04.2023	70	39	11.3	27	1.6	25	13	<0.01	<5.0	<1.0	<4.2	<0.5
2.	06.04.2023	51	27	<6.0	11	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
3.	10.04.2023	58	34	8.3	22	1.3	21	11	<0.01	<5.0	<1.0	<4.2	<0.5
4.	12.04.2023	54	30	<6.0	14	1.1	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	18.04.2023	69	36	9.6	25	1.4	24	12	<0.01	<5.0	<1.0	<4.2	<0.5
6.	21.04.2023	62	30	8.7	23	1.3	22	11	<0.01	<5.0	<1.0	<4.2	<0.5
7.	24.04.2023	56	31	7.8	21	1.2	20	10	< 0.01	<5.0	<1.0	<4.2	<0.5
8	27.04.2023	51	27	<6.0	12	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
	as per CPCB notification, New 8th Nov, 2009. for Ambient air quality	100	60	80	80	2	180	400	1	20	6	5	1
Sampling	and Analysis done according to	1S: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006	IS 5182 : (Part- 10) :1999	Air Sampling, 3 rd Edn. By James P. Lodge (Method-417)	3rd Edn. By James P. Lodge	USEPA	USEPA 10-3.4	USEPA 10-3.4	IS 5182 : (Part 11) :2006	IS 5182 : (Part 12) :2004

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0028
"Indian Oil Corporation Limited Digboi"	Report Date : 18.05.23
Assam Oil Division,	Sample Description : Ambient Air
P.O Digboi, Assam - 786171	Sample Number: MSKGL/ED/2023-24/05/00063-00070
Reference No.& Date: 27371982 Dated: 19/11/2021	Sampling Location: COOLING TOWER-WAX SECTOR

ANALYSIS RESULT

SL. No.	Date of Monitoring	PM 10 (µg/m³)	PM 1.5 (µg/m ²)	SO ₂ (µg/m ³)	NO ₃ (µg/m ³)	CO (mg/m³)	O ₃ (µg/m ³)	NH ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)
1.	03.04.2023	54	28	8.3	23	1.2	22	11	<0.01	<5.0	<1.0	<4.2	<0.5
2.	06.04.2023	49	27	<6.0	11	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
3.	10.04.2023	59	28	9.6	25	1.5	24	12	<0.01	<5.0	<1.0	<4.2	<0.5
4.	12.04.2023	51	27	<6.0	12	1.1	<20	<10	< 0.01	<5.0	<1.0	<4.2	<0.5
5.	18.04.2023	60	33	10.7	28	1.8	27	14	< 0.01	<5.0	<1.0	<4.2	<0.5
6.	21.04.2023	55	29	8.3	24	1.3	23	11	<0.01	<5.0	<1.0	<4.2	<0.5
7,	24.04.2023	52	31	<6.0	12	1.1	<20	<10	< 0.01	<5.0	<1.0	<4.2	<0.5
8	27.04.2023	67	35	12.1	29	1.9	30	15	<0.01	<5.0	<1.0	<4.2	<0.5
	as per CPCB notification, New 8th Nov, 2009. for Ambient air quality	100	60	80	80	2	180	400	1	20	6	5	1
Sampling	and Analysis done according to	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006	IS 5182 : (Part- I0) :1999	Air Sampling, 3 ^{rc} Edn. By James P. Lodge (Method-417)	3 rd Edn. By James P. Lodge	HSEPA	USEPA IO-3.4	USEPA IO-3.4	IS 5182 : (Part 11) :2006	IS 5182 : (Part 12) :2004

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No. : MSK/GHY/2023-24/0206
"Indian Oil Corporation Limited Digboi"	Report Date : 27.07.23
Assam Oil Division,	Sample Description : Ambient Air
P.O Digboi, Assam - 786171	Sample Number : MSKGL/ED/2023-24/07/00357-00361
Reference No.& Date: 27371982 Dated : 19/11/2021	Sampling Location : BAZAAR GATE

ANALYSIS RESULT

SL. No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM 2.5 (µg/m ³)	SO ₂ (µg/m³)	NO ₂ (μg/m ³)	CO (mg/m³)	Ο ₃ (μg/m ³)	NH ₃ (μg/m ³)	Pb (μg/m ³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)
1.	13.06.2023	74	39	8.3	23	1.6	22	11	<0.01	<5.0	<1.0	<4.2	<0.5
2.	16.06.2023	59	33	<6.0	15	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
3.	19.06.2023	68	32	7.4	21	1.4	21	10	<0.01	<5.0	<1.0	<4.2	<0.5
4.	23.06.2023	52	27	<6.0	12	1.1	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	26.06.2023	63	35	6.9	19	1.3	20	10	<0.01	<5.0	<1.0	<4.2	<0.5
	as per CPCB notification, New 8th Nov, 2009. for Ambient air quality	100	60	80	80	2	180	400	1	20	6	5	1
	g and Analysis done according to LUES: SO2- <6.0, OZONE- <20.0,	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006	IS 5182 : (Part- 10) :1999	Air Sampling, 3rd Edn. By James P. Lodge (Method-417)	3 rd Edn. By James P. Lodge	USEPA IO-3.4	USEPA 10-3.4	USEPA 10-3.4	IS 5182 : (Part 11) :2006	IS 5182; (Part 12):2004

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the (tem(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0207
"Indian Oil Corporation Limited Digboi"	Report Date : 27.07.23
Assam Oil Division,	Sample Description : Ambient Air
P.O Digboi, Assam - 786171	Sample Number : MSKGL/ED/2023-24/07/00362-00366
Reference No. & Date: 27371982 Dated : 19/11/2021	Sampling Location : NEW TANK FIRM

ANALYSIS RESULT

SL. No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	$SO_2 \ (\mu g/m^3)$	NO ₂ (μg/m ³)	CO (mg/m³)	Ο ₃ (μg/m ³)	NH ₃ (μg/m ³)	Pb (μg/m ³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³
1.	13.06.2023	53	29	<6.0	14	1.1	<20	<10	<0.01	<5.0	<1.0	<4.2	
2.	16.06.2023	75	39	8.3	23	1.5	23	12	<0.01	<5.0	<1.0	<4.2	<0.5
3.	19.06.2023	60	35	6.5	18	1.3	20	10	<0.01	<5.0	<1.0	-	<0.5
4.	23.06.2023	55	31	<6.0	15	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	26.06.2023	67	35	7.6	21	1.4	22	11	<0.01	<5.0	<1.0	<4.2	<0.5
Limit : Delhi, 1	as per CPCB notification, New 8th Nov, 2009, for Ambient air quality	100	60	80	80	2	180	400	1	20	6	5	<0.5
	and Analysis done according to UES: SO2- <6.0, OZONE- <20.0,	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006	IS 5182 : (Part- 10) :1999	Air Sampling, 3 rd Edn. By James P. Lodge (Method-417)	3rd Edn. By James P. Lodge (Method- 401)	USEPA IO-3.4	USEPA 10-3.4	USEPA IO-3.4	IS 5182 : (Part 11) :2006	IS 5182 : (Part 12) :2004

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No. : MSK/GHY/2023-24/0208
"Indian Oil Corporation Limited Digboi"	Report Date : 27.07.23
Assam Oil Division,	Sample Description : Ambient Air
P.O Digboi, Assam - 786171	Sample Number : MSKGL/ED/2023-24/07/00367-00371
Reference No.& Date: 27371982 Dated: 19/11/2021	Sampling Location : EFFLUENT TREATMENT PLANT

ANALYSIS RESULT

SL. No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)	Ο ₃ (μg/m ³)	NH ₃ (μg/m ³)	Pb (µg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)
1.	13.06.2023	57	30	<6.0	13	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
2.	16.06.2023	69	38	7.5	21	1.4	22	11	<0.01	<5.0	<1.0	<4.2	<0.5
3.	19.06.2023	55	29	<6.0	12	1.1	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
4.	23.06.2023	63	30	6.9	19	1.3	20	10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	26.06.2023	54	28	<6.0	11	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
	as per CPCB notification, New 8th Nov, 2009, for Ambient air quality	100	60	80	80	2	180	400	1	20	6	5	1
	g and Analysis done according to UES: SO2- <6.0, OZONE- <20.0,	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006	IS 5182 : (Part- 10) :1999	Lodge (Method-417)	3 rd Edn. By James P. Lodge (Method- 401)	USEPA IO-3.4	USEPA IO-3.4	USEPA 10-3.4	IS 5182 : (Part 11) :2006	IS 5182 : (Part 12) :2004

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No. : MSK/GHY/2023-24/0209
"Indian Oil Corporation Limited Digboi"	Report Date: 27.07.23
Assam Oil Division,	Sample Description : Ambient Air
P.O Digboi, Assam - 786171	Sample Number: MSKGL/ED/2023-24/07/00372-00376
Reference No. & Date: 27371982 Dated: 19/11/2021	Sampling Location : COOLING TOWER-WAX SECTOR

ANALYSIS RESULT

SL. No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM 2.5 (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)	Ο ₃ (μg/m ³)	NH ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)
1.	13.06.2023	52	25	<6.0	13	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
2.	16.06.2023	48	27	<6.0	11	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	2.0
3.	19.06.2023	54	26	<6.0	16	1.3	<20	<10	<0.01	<5.0	<1.0		<0.5
4.	23.06.2023	59	31	6.3	19	1.4	21	10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	26.06.2023	62	34	6.7	21	1.5	22	11	<0.01	<5.0	<1.0	<4.2	<0.5
Limit : Delhi, 1	as per CPCB notification, New 8th Nov, 2009. for Ambient air quality	100	60	80	80	2	180	400	1	20	6	5	<0.5
	g and Analysis done according to UES: SO2- <6.0, OZONE- <20.0,	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006	IS 5182 : (Part- 10) :1999	Air Sampling, 3 rd Edn. By James P. Lodge (Method-417)	3 rd Edn. By James P. Lodge (Method- 401)	USEPA 10-3.4	USEPA 10-3.4	USEPA 10-3.4	IS 5182 : (Part 11) :2006	IS 5182: (Part 12):2004

Report Prepared By :

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

The results relate only to the (tem(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0261
"Indian Oil Corporation Limited Digboi"	Report Date : 16.08.2023
Assam Oil Division, P.O Digboi, Assam - 786171	Sample Description : Ambient Air
	Sample Number: MSKGL/ED/2023-24/08/00391-00399
Reference No. & Date: 27371982 Dated : 19/11/2021	Sampling Location: BAZAAR GATE

ANALYSIS RESULT

SL, No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM 2.5 (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)	Ο ₃ (μg/m ³)	NH ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As .	Benzene	Benzo(a)
1.	03.07.2023	72	38	7.6	25	1.7					(ng/m ³)	(μg/m³)	pyrene (ng/m ³
2.	06.07.2023	57	32	<6.0	16	1.2	24	12	<0.01	<5.0	<1.0	<4.2	<0.5
3.	10.07.2023	65	31	6.9	21		<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
4.	14.07.2023	53	28	<6.0	13	1.5	20	10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	17.07.2023	69	38	7.4		1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
6.	20.07.2023	74	35		23	1.4	22	11	< 0.01	<5.0	<1.0	<4.2	<0.5
7.	24.07.2023	62	36	8.6	26	1.6	25	13	<0.01	<5.0	<1.0	<4.2	<0.5
8.	27.07.2023	58	31	6.5	20	1.4	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
9.	31.07.2023	70		<6.0	17	1.1	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
Limit as per CPCB notification, New		70	39	7.3	24	1.6	23	11	< 0.01	<5.0	<1.0	<4.2	<0.5
Delhi, 18th Nov, 2009. for Ambient air quality		100	60	80	80	2	180	400	1	20	6	5	1
ampling and Analysis done according to DL VALUES: SO2- <6.0, OZONE- <20.0,		IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006	IS 5182 : (Part- 10) :1999	Lodge (Method-417)	3rd Edn. By James P. Lodge (Method-	USEPA IO-3.4	USEPA IO-3.4	USEPA IO3.4	IS 5182 ; (Part 11) :2006	IS 5182 : (Part 12) :2004

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0262						
"Indian Oil Corporation Limited Digboi" Assam Oil Division,	Report Date : 16.08.2023						
	Sample Description : Ambient Air						
P.O Digboi, Assam - 786171	Sample Number: MSKGL/ED/2023-24/08/00400-00408						
Reference No. & Date: 27371982 Dated: 19/11/2021	Sampling Location : NEW TANK FIRM						

ANALYSIS RESULT

SL.						ISIS RE							
N0.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM 2.5 (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m ³)	Ο ₃ (μg/m ³)	NH ₃ (μg/m ³)	Pb (μg/m ³)	Ni (ng/m³)	As (ng/m³)	Benzene	
1.	03.07.2023	56	31	<6.0	15	1.2	<20	-	-0.04			(µg/m³)	pyrene (ng/m
2.	06.07.2023	78	41	8.6	25	1.6	24	<10	<0.01	<5.0	<1.0	<4.2	<0.5
3.	10.07.2023	64	38	6.7	22	1.3		12	<0.01	<5.0	<1.0	<4.2	<0.5
4.	14.07.2023	59	33	<6.0	21	-	21	11	<0.01	<5.0	<1.0	<4.2	<0.5
5.	17.07.2023	55	31			1.2	20	10	<0.01	<5.0	<1.0	<4.2	< 0.5
6.	20.07.2023	72	34	<6.0	17	1,1	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
7.	24.07.2023	67		7.8	25	1.5	24	12	< 0.01	<5.0	<1.0	<4.2	<0.5
8.	27.07.2023	75	39	7.2	23	1.4	22	11	< 0.01	<5.0	<1.0	<4.2	<0.5
9.	31.07.2023		36	8.1	24	1.5	23	12	< 0.01	<5.0	<1.0	<4.2	<0.5
01.07.2020		62	33	6.5	20	1.3	<20	<10	< 0.01	<5.0	<1.0	<4.2	<0.5
Limit as per CPCB notification, New Delhi, 18th Nov, 2009. for Ambient air quality		100	60	80	80	2	180	400	1	20	6	5	1
ampling and Analysis done according to DL VALUES: SO2-<6.θ, OZONE-<20.θ,		IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	(Part- 6) -2006		Lodge (Method-417)	3 rd Edn. By James P. Lodge (Method-	USEPA IO-3.4	USEPA IO-3.4	USEPA IO-3.4	IS 5182: (Part 11):2006	IS 5182 : (Part 12) :200-

UES: SO2-<6.0, OZONE-<20.0, NH3-<10.0, Pb-<0.01, Ni-<5.0, As-<1.0, BENZENE-<4.2, BENZO(a)PYRENE-<0.5

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0263						
"Indian Oil Corporation Limited Digboi" Assam Oil Division,	Report Date: 16.08.2023						
	Sample Description : Ambient Air						
P.O Digboi, Assam - 786171	Sample Number: MSKGL/ED/2023-24/08/00409-00417						
Reference No. & Date: 27371982 Dated: 19/11/2021	Sampling Location: EFFLUENT TREATMENT PLANT						

ANALYSIS RESULT

SL. No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM 2.5 (μg/m ³)	SO ₂ (µg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)	Ο ₃ (μg/m ³)	NH ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m ³)	As	Benzene	Benzo(a)
1.	03.07.2023	62	33	6.5	17	1.4	<20		-0.04		(ng/m³)	(μg/m³)	pyrene (ng/m³)
2.	06.07.2023	72	40	7.8	22	1.6	21	<10	<0.01	<5.0	<1.0	<4.2	<0.5
3.	10.07.2023	65	38	6.9	19	1.5		11	<0.01	<5.0	<1.0	<4.2	<0.5
4.	14.07.2023	59	33	6.3	15		<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	17.07.2023	55	31	<6.0		1.3	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
6.	20.07.2023	67	32	-	12	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
7.	24.07.2023	74	-	7.2	21	1.4	20	10	<0.01	<5.0	<1.0	<4.2	<0.5
8.	27.07.2023	66	39	7.9	25	1.6	24	12	<0.01	<5.0	<1.0	<4.2	<0.5
9.	31.07.2023		31	6.8	20	1.5	21	11	<0.01	<5.0	<1.0	<4.2	<0.5
		59	31	<6.0	18	1.4	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
Limit as per CPCB notification, New Delhi, 18th Nov, 2009, for Ambient air quality		100	60	80	80	2	180	400	1	20	6	5	1
ampling and Analysis done according to DL VALUES: SO2- <6.0, OZONE- <20.0,		IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	(Part- 6) -2006		Lodge (Method-417)	3 rd Edn. By James P. Lodge (Method-	USEPA IO-3.4	USEPA 10-3.4	USEPA 10-3.4	IS 5182 : (Part 11) :2006	IS 5182 : (Part 12) :2904

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0264
"Indian Oil Corporation Limited Digboi"	Report Date : 16.08.2023
Assam Oil Division, P.O Digboi, Assam - 786171	Sample Description : Ambient Air
	Sample Number: MSKGL/ED/2023-24/08/00418-00426
Reference No. & Date: 27371982 Dated : 19/11/2021	Sampling Location : COOLING TOWER-WAX SECTOR

ANALYSIS RESULT

					ANT VALLE	YSIS RE	SULI						
SL. No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM 2.5 (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (µg/m ³)	CO (mg/m³)	Ο ₃ (μg/m ³)	NH ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As	Benzene	The second secon
1.	03.07.2023	57	27	<6.0	14	1.3	<20				(ng/m³)	(μg/m³)	pyrene (ng/m
2.	06.07.2023	62	34	6.5	16	1.5		<10	<0.01	<5.0	<1.0	<4.2	<0.5
3.	10.07.2023	73	38	7.9	22	1.7	<20	<10	<0.01	<5.0	<1.0	<4.2	< 0.5
4.	14.07.2023	59	33	<6.0	12	_	21	11	<0.01	<5.0	<1.0	<4.2	<0.5
5.	17.07.2023	55	31	<6.0		1.4	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
6.	20.07.2023	63	35		11	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
7.	24.07.2023	58		6.7	19	1.5	20	10	<0.01	<5.0	<1.0	<4.2	<0.5
8.	27.07.2023	60	28	<6.0	11	1.4	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
9.	31.07.2023		32	6.2	15	1.3	<20	<10	< 0.01	<5.0	<1.0	<4.2	<0.5
	s per CPCB notification, New	69	38	7.3	21	1.6	20	10	< 0.01	<5.0	<1.0	<4.2	-
Delhi, 18	3th Nov, 2009. for Ambient air quality	100	60	80	80	2	180	400	1	20	6	5	<0.5
	and Analysis done according to UES: SO2- <6.0, OZONE- <20.0,	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	(Part- 6) -2006	IS 5182 : (Part- 10) :1999	Lodge (Method-417)	3rd Edn. By James P. Lodge (Method-	USEPA IO-3,4	USEPA IO-3.4	USEPA IO3.4	IS 5182; (Part 11):2006	IS 5182 : (Part 12) :2004

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer :	Report No. : MSK/GHY/2023-24/0368
"Indian Oil Corporation Limited Digboi" Assam Oil Division,	Report Date : 26.09.2023
O Digboi, Assam - 786171	Sample Description : Ambient Air
Reference No.& Date: 27371982 Dated: 19/11/2021	Sample Number: MSKGL/ED/2023-24/09/00297-00305
2 Dated : 19/11/2021	Sampling Location : BAZAAR GATE

ANALYSIS RESULT

SL.	D		ma e										
N0.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM 2.5 (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m ³	O ₃ (μg/m³)	NH ₃	Pb (us/m³)	Ni (ng/m³)	As	Benzene	Benzo(a)
1.	03.08.2023	69	36	7.3	23	_		(μg/m³)	- (pg/m/)	· (ng/m)	(ng/m^3)	$(\mu g/m^3)$	pyrene (ng/m
2.	07.08.2023	72	40	8.1	25	1.3	22	11	<0.01	<5.0	<1.0	<4.2	<0.5
3.	10.08.2023	68	32	7.3	22	1.4	24	12	< 0.01	<5.0	<1.0	<4.2	
4.	14.08.2023	57	30	<6.0		1.2	21	10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	17.08.2023	64	36	6.9	14	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
6.	21.08.2023	73	35		19	1.2	<20	<10	<0.01	<5.0	<1.0		<0.5
7.	24.08.2023	58	34	8.4	26	1.5	25	12	<0.01	<5.0	<1.0	<4.2	<0.5
8.	28.08.2023	63		<6.0	15	1.1	<20	<10	< 0.01	<5.0		<4.2	<0.5
9.	31.08.2023	75	33	6.7	17	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
Limit as	per CPCB notification New	15	42	8.9	27	1.7	26	13	<0.01	<5.0	<1.0	<4.2	<0.5
Delhi, 18	th Nov. 2009. for Ambient air	100	60	80	80				10.01	\5.0	<1.0	<4.2	<0.5
	quality			00	00	2	180	400	1	20	6	5	1
	ES: SO2- <6.0, OZONE- <20.0,	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	(Part-2) -2001	IS: 5182 (Part- 6) -2006	(Part- 10):1999	(Method-417)	3 rd Edn. By James P. Lodge (Method	USEPA IO-3.4	USEPA IO-3.4	USEPA 10-3,4	IS 5182 : (Part 11) :2006	IS 5182 : (Part 12) :2004

Report Prepared By :

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No. : MSK/GHY/2023-24/0369
"Indian Oil Corporation Limited Digboi"	Report Date : 26.09.2023
Assam Oil Division,	Sample Description : Ambient Air
P.O Digboi, Assam - 786171	Sample Number: MSKGL/ED/2023-24/09/00306-00314
Reference No.& Date: 27371982 Dated : 19/11/2021	Sampling Location : NEW TANK FIRM

ANALYSIS RESULT

SL. No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)	Ο ₃ (μg/m³)	NH ₃ (μg/m ³)	Pb (μg/m ³)	Ni (ng/m³)	As	Benzene	Benzo(a)
1.	03.08.2023	59	33	<6.0	14	1.1	<20	<10	+0.04		(ag/m³)	(μg/m³)	pyrene (ng/m³)
2.	07.08.2023	74	39	8.3	23	1.3	22	-	<0.01	<5.0	<1.0	<4.2	<0.5
3.	10.08.2023	67	39	7.2	21	1.2	20	11	<0.01	<5.0	<1.0	<4.2	<0.5
4.	14.08.2023	55	31	<6.0	12	_	-	10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	17.08.2023	58	32	<6.0	16	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
6.	21.08.2023	75	36	-		1.1	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
7.	24.08.2023	62	36	8.5	24	1.6	23	12	<0.01	<5.0	<1.0	<4.2	<0.5
8.	28.08.2023	79		6.4	19	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
9.	31.08.2023		38	8.7	27	1.8	26	13	<0.01	<5.0	<1.0	<4.2	<0.5
	as per CPCB notification, New	64	34	6.9	18	1.1	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
Delhi,	18th Nov, 2009, for Ambient air quality	100	60	80	80	2	180	400	1	20	6	5	1
	g and Analysis done according to LUES: SO2- <6.0, OZONE- <20.0,	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	(Part- 6) -2006		Lodge (Method-417)	3 rd Edn. By James P. Lodge (Method-	USEPA IO-3.4	USEPA 10-3.4	USEPA 10-3.4	IS 5182 : (Part 11) :2006	IS 5182 : (Part 12) :2004

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer :	Report No.: MSK/GHY/2023-24/0370
"Indian Oil Corporation Limited Digboi" Assam Oil Division,	Report Date : 26.09.2023
D Digboi, Assam - 786171	Sample Description : Ambient Air
Reference No.& Date: 27371982 Dated: 19/11/2021	Sample Number: MSKGL/ED/2023-24/09/00315-00323
Date: 2/3/1962 Dated: 19/11/2021	Sampling Location: EFFLUENT TREATMENT PLANT

ANALYSIS RESULT

SL. NO.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM 25 (μg/m³)	SO ₂	NO ₂	CO	O ₃	NH ₃			1	-	
1.	03.08.2023	65		(μg/m³)	(μg/m³)	(mg/m ³	(μg/m³)	(μg/m ³)	Pb (μg/m ³)	Ni (ng/m³)	As (tg/m ³)	Benzene (μg/m³)	7.17
2.	07.08.2023	76	34	6.7	17	1.2	<20	<10	<0.01	<5.0	<1.0		pyrene (ng/m²
3.	10.08.2023	60	42	7.9	25	1.5	24	12	<0.01	<5.0	<1.0	<4.2	<0.5
4.	14.08.2023	55	35	6.3	14	1.1	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	17.08.2023	59	31	<6.0	12	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
6.	21.08.2023	64	33	<6.0	13	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
7.	24.08.2023	78	30	6.5	15	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
8.	28.08.2023	62	41	8.3	26	1.6	25	12	<0.01	<5.0	<1.0	<4.2	<0.5
9.	31.08.2023	58	30	6.4	15	1.2	<20	<10	<0.01	<5.0		<4.2	<0.5
Limit as	per CPCB notification New	38	31	<6.0	11	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
Delhi, 18	th Nov, 2009. for Ambient air quality	100	60	80	80	2	180	400	1	20	<1.0	<4.2 5	<0.5
	end Analysis done according to ES: SO2- <6.0, OZONE- <20.0,	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	-2001	-2006	(Part- 10) :1999	By James P. Lodge (Method-417)	3 rd Edn, By James P. Lodge (Method-	USEPA IO-3.4	USEPA IO-3.4	USEPA 103.4	IS 5182 :	IS 5182 : (Part 12) :2004

Report Prepared By :

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer :	Report No.: MSK/GHY/2023-24/0372
"Indian Oil Corporation Limited Digboi" Assam Oil Division,	Report Date: 26.09.2023
P.O Digboi, Assam - 786171	Sample Description : Ambient Air
Reference No.& Date: 27371982 Dated: 19/11/2021	Sample Number : MSKGL/ED/2023-24/09/00324-00332
June 110.02 Date: 2/3/1982 Dated: 19/11/2021	Sampling Location : COOLING TOWER-WAX SECTOR

ANALYSIS RESULT

SL. No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM 2.5 (μg/m ³)	SO ₂	NO ₂	CO	O ₃	NH ₃	Di 1		As	D	T -
1.	03.08.2023	72	34	(μg/m³)		(mg/m ³	(μg/m ³)	(μg/m ³)	Pb (μg/m ³)	Ni (ng/m²)	(ng/m ³)	Benzene (μg/m³)	Benzo(a) pyrene (ng/m ³
2.	07.08.2023	65		7.4	23	1.4	22	11	< 0.01	<5.0	<1.0	<4.2	
3.	10.08.2023	55	36	6.8	20	1.2	<20	<10	< 0.01	<5.0	<1.0	<4.2	<0.5
4.	14.08.2023	62	29	<6.0	16	1.1	<20	<10	< 0.01	<5.0	<1.0	<4.2	<0.5
5.	17.08.2023	74	34	6.4	19	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
6.	21.08.2023	60	41	7.9	25	1.5	24	12	<0.01	<5.0	<1.0	<4.2	<0.5
7.	24.08.2023	52	33	6.3	20	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
8.	28.08.2023	59	25	<6.0	13	1.0	<20	<10	< 0.01	<5.0	<1.0		<0.5
9.	31.08.2023	70	31	6.1	15	1.1	<20	<10	< 0.01	<5.0	<1.0	<4.2	<0.5
Limit as	per CPCB notification New	70	39	7.4	22	1.3	21	10	<0.01	<5.0	<1.0	<4.2	<0.5
Delhi, 18	th Nov, 2009, for Ambient air quality	100	60	80	80	2	180	400	1	20	6	<4.2 5	<0.5
	end Analysis done according to ES: SO2-<6.0, OZONE-<20.0,	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006	(Part- 10) :1999	By James P. Lodge (Method-417)	3 rd Edn. By James P. Lodge (Method-	USEPA IO-3.4	USEPA IO-3.4	USEPA 10-3.4	IS 5182 ; (Part 11) :2006	IS 5182 : (Part 12) :2004

Report Prepared By :

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No. : MSK/GHY/2023-24/0494
"Indian Oil Corporation Limited Digboi"	Report Date : 30.10.2023
Assam Oil Division, P.O Digboi, Assam - 786171	Sample Description : Ambient Air
	Sample Number: MSKGL/ED/2023-24/10/00278-00286
Reference No. & Date: 27371982 Dated : 19/11/2021	Sampling Location : BAZAAR GATE

ANALYSIS RESULT

SL.						_							
NO.	Date of Monitoring	$PM_{10} (\mu g/m^3)$	PM 2.5 (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)	Ο ₃ (μg/m ³)	NH ₃ (μg/m ³)	Pb (µg/m³)	Ni (ng/m³)	As	Benzene	C11000770.500778
1.	04.09.2023	75	39	7.6	25	1.4	24	-	.0.04		(ng/m ³)	(μg/m³)	pyrene (ng/m
2.	07.09.2023	69	38	7.2	23	1.2	22	12	<0.01	<5.0	<1.0	<4.2	< 0.5
3.	11.09.2023	62	30	6.5	21	1.1	-	11	<0.01	<5.0	<1.0	<4.2	<0.5
4.	14.09.2023	54	28	<6.0	15	_	20	10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	18.09.2023	67	37	6.9		1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
6.	21.09.2023	74	35	7.5	18	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
7.	25.09.2023	52	31		24	1.3	23	11	<0.01	<5.0	<1.0	<4.2	<0.5
8.	28.09.2023	64		<6.0	12	1.0	<20	<10	< 0.01	<5.0	<1.0	<4.2	<0.5
9.	29.09.2023		34	6.3	16	1.1	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
	s per CPCB notification, New	78	43	8.1	27	1.6	26	13	<0.01	<5.0	<1.0	<4.2	
Delhi, 18	oth Nov, 2009. for Ambient air quality	100	60	80	80	2	180	400	1	20	6	5	<0.5
	and Analysis done according to UES: SO2- <6.0, OZONE- <20.0,	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006		Lodge (Method-417)	3rd Edn. By James P. Lodge (Method-	USEPA 10-3.4	USEPA IO-3.4	USEPA 10-3.4	IS 5182 : (Part 11) :2006	IS 5182: (Part 12):2004

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0495			
"Indian Oil Corporation Limited Digboi"	Report Date : 30.10.2023			
Assam Oil Division, P.O Digboi, Assam - 786171	Sample Description : Ambient Air			
	Sample Number : MSKGL/ED/2023-24/10/00287-00295			
Reference No. & Date: 27371982 Dated : 19/11/2021	Sampling Location : NEW TANK FIRM			

ANALYSIS RESULT

					ANAL	YSIS RE	SULI						
SL. No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)	Ο ₃ (μg/m ³)	NH ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As	Benzene	
l.	04.09.2023	63	35	6.5	17	1.2	<20				(ng/m ³)	(μg/m³)	pyrene (ng/m
2.	07.09.2023	72	38	7.4	24	1.3	23	<10	<0.01	<5.0	<1.0	<4.2	<0.5
3.	11.09.2023	66	39	6.9	20			11	<0.01	<5.0	<1.0	<4.2	<0.5
4.	14.09.2023	52	29	<6.0	13	1.1	<20	<10	<0.01	<5.0	<1.0	<4.2	< 0.5
5.	18.09.2023	60	33	<6.0		1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
6.	21.09.2023	76	36	_	15	1.1	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
7.	25.09.2023	69		7.9	25	1.5	24	12	< 0.01	<5.0	<1.0	<4.2	<0.5
8.	28.09.2023	78	41	7.0	21	1.3	20	10	< 0.01	<5.0	<1.0	<4.2	<0.5
9.	29.09.2023		37	8.2	26	1.6	25	13	< 0.01	<5.0	<1.0	<4.2	-
	is per CPCB notification, New	65	34	6.7	19	1.1	<20	<10	< 0.01	<5.0	<1.0		<0.5
Delhi, 1	8th Nov, 2009. for Ambient air quality	100	60	80	80	2	180	400	1	20	6	<4.2 5	<0.5
ampling and Analysis done according to DL VALUES: SO2- <6.0, OZONE- <20.0,		IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006	IS 5182 : (Part- 10) :1999	(Method-417)	3rd Edn. By James P. Lodge (Method-	USEPA IO-3.4	USEPA IO-3,4	USEPA 10-3.4	IS 5182 : (Part 11) :2006	IS 5182 : (Part 12) :2004

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No.: MSK/GHY/2023-24/0496			
"Indian Oil Corporation Limited Digboi"	Report Date : 30.10.2023			
Assam Oil Division,	Sample Description : Ambient Air			
O Digboi, Assam - 786171	Sample Number: MSKGL/ED/2023-24/10/00296-00304			
Reference No. & Date: 27371982 Dated: 19/11/2021	Sampling Location: EFFLUENT TREATMENT PLANT			

ANALYSIS RESULT

SL. No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM 2.5 (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)	Ο ₃ (μg/m ³)	NH ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (/-3)	Benzene	Benzo(a)
1.	04.09.2023	62	33	6.4	15	1.1	<20	-	-0.04		(ng/m ³)	(μg/m³)	pyrene (ng/m³)
2.	07.09.2023	74	41	7.6	24	1.4	23	<10	<0.01	<5.0	<1.0	<4.2	< 0.5
3.	11.09.2023	58	34	<6.0	12	1.0	<20	12	<0.01	<5.0	<1.0	<4.2	< 0.5
4.	14.09.2023	52	29	<6.0	11	1.0	-	<10	<0.01	<5.0	<1.0	<4.2	<0.5
5.	18.09.2023	69	38	7.2	21		<20	<10	<0.01	<5.0	<1.0	<4.2	< 0.5
6.	21.09.2023	62	30	6.3		1.2	20	10	<0.01	<5.0	<1.0	<4.2	<0.5
7.	25.09.2023	73	38	-	19	1.1	<20	<10	<0.01	<5.0	<1.0	<4.2	< 0.5
8.	28.09.2023	65	31	7.5	23	1.4	22	11	<0.01	<5.0	<1.0	<4.2	<0.5
9.	29.09.2023	55		6.7	22	1.3	21	10	<0.01	<5.0	<1.0	<4.2	<0.5
Limit	as per CPCB notification, New	. 33	29	<6.0	14	1.1	<20	<10	< 0.01	<5.0	<1.0	<4.2	<0.5
Delhi,	18th Nov, 2009. for Ambient air quality	100	60	80	80	2	180	400	1	20	6	5	1
	g and Analysis done according to LUES: SO2-<6.0, OZONE-<20.0,	IS: 5182 (Part-23) -2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006	IS 5182 : (Part- 10) :1999	Lodge (Method-417)	3rd Edn. By James P. Lodge (Method-	USEPA 10-3.4	USEPA IO-3.4	USEPA 10-3.4	IS 5182 : (Part 11) :2006	IS 5182 : (Part 12) :2004

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Name & Address of the Customer:	Report No. : MSK/GHY/2023-24/0497
"Indian Oil Corporation Limited Digboi"	Report Date : 30.10.2023
Assam Oil Division, P.O Digboi, Assam - 786171	Sample Description : Ambient Air
	Sample Number: MSKGL/ED/2023-24/10/00305-00313
Reference No. & Date: 27371982 Dated: 19/11/2021	Sampling Location : COOLING TOWER-WAX SECTOR

ANALYSIS RESULT

ev.		_			MINAL	YSIS RE	SULI						
SL. No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM 1.5 (μg/m ³)	SO ₂ (µg/m³)	NO ₂ (μg/m ³)	CO (mg/m³)	Ο ₃ (μg/m ³)	NH ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As	Benzene	
1.	04.09.2023	75	36	7.7	24	1.5	23	-			(ng/m ³)	(µg/m³)	pyrene (ng/m
2.	07.09.2023	67	37	6.9	21	1.3	20	12	<0.01	<5.0	<1.0	<4.2	<0.5
3.	11.09.2023	52	27	<6.0	14	1.2		10	<0.01	<5.0	<1.0	<4.2	<0.5
4.	14.09.2023	64	36	6.5	17		<20	<10	<0.01	<5.0	<1.0	<4.2	< 0.5
5.	18.09.2023	72	40	7.3		1.1	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
6.	21.09.2023	58	32		23	1.4	22	11	<0.01	<5.0	<1.0	<4.2	<0.5
7.	25.09.2023	76		<6.0	16	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
8.	28.09.2023	62	36	7.9	27	1.7	26	13	<0.01	<5.0	<1.0	<4.2	<0.5
9.	29.09.2023		33	6.3	15	1.2	<20	<10	<0.01	<5.0	<1.0	<4.2	<0.5
Limit	as per CPCB notification, New	51	28	<6.0	11	1.0	<20	<10	<0.01	<5.0	<1.0	<4.2	-
Delhi, 1	8th Nov, 2009. for Ambient air quality	100	60	80	80	2	180	400	1	20	6	5	<0.5
	and Analysis done according to UES: SO2- <6.0, OZONE- <20.0,	-2006	IS: 5182 (Part-24) -2019	IS: 5182 (Part-2) -2001	IS: 5182 (Part- 6) -2006		Lodge (Method-417)	3 rd Edn. By James P. Lodge (Method-	USEPA IO-3.4	USEPA 10-3.4	USEPA 10-3.4	IS 5182 : (Part 11) :2006	IS 5182 : (Part 12) :2004

Report Prepared By:

For Mitra S.K. Pvt. Ltd.

Authorized Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India.

Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Mitra S. K. Private Limited

	LDAR	PROGRAM at Digboi Refinery		
	SUM	MARY SHEET _Q-1 (2023-2024)		
Sl No.	Unit	Date of Monitoring/Rechecking	Points	Leak Points
1	HDTU	22.04.2023 TO 23.04.2023	120	0
2	HGU	21.04.2023	165	0
3	CRU	01.05.2023	262	0
4	O M & S (Crude Oil Pump House)	10.05.2023	10	0
5	O M & S (Production pump house)	10.05.2023	192	0
6	O M & S (Circulation pump house)	10.05.2023	98	0
7	O M & S (SDU off Side Pump House)	09.05.2023	133	0
8	O M & S (Liquid Transfer Pump House)	10.05.2023	26	0
9	O M & S (CRU Off Side Pump House)	01.05.2023	126	0
10	OM & S (New TANK Firm)	11.05.2023	778	0
11	DCU	04.05.2023 TO 05.05.2023	1043	0
12	MSQU	03.05.2023	970	0
13	AVU	08.05.2023	370	0
14	SDU	09.05.2023	328	0

Report Prepared By:

Stlagundan

for Mitra & R. Private Limited

Authorised Signatory

SI No	Action Point	Present Status of Digboi Refinery
1.	Member Secretary, CPCB expressed serious concern on most of the Refineries not Monitoring all the New parameters (as per March, 2008 notification) in effluent and desired Refineries should develop capabilities to start monitoring each parameter and report the detail data to CPCB regularly. Further effluents discharged from the ETP outlet were found having high values of BOD and oil and grease indicating that effluent treatment facilities are not meeting standards and may require up-gradation. The effluent data to be sent CPCB on daily basis through the CPCB online air quality monitoring server	For Effluent out of 21 parameters 9 Parameters i.e pH, oil and grease, BOD, COD, TSS, MLSS, Phenol, Sulphide & Cyanide are tested in Digboi Refinery on daily basis. Report of these test are submitted to PCB, Assam regularly. Remaining tests are done by the Third Party MITRA S.K. Pvt Ltd, Kolkata. Detailed up gradation study of ETP through M/s NEERI, Nagpur, was done in October 2014. Treated effluent from ETP is recycled to refinery as Fire water tank make up, cleaning and gardening purposes at ETP. Treated effluent is reused as make up for Coke Cutting water at delayed coking unit, Wax Sector Cooling Tower & Fire Water Network. During Apr'23 – Sep'23, 100% of treated effluent was reused.
2.	2.1 The PM Emission from furnace, boilers and captive power plant is not compiled in some of the units and the reason stated are (10 & 100 mg/Nm3 for FG and NG Respectively) too stringent and retrofitting like ESP or installation of filters for fuel is not feasible.	Emission of PM from furnace, boilers & Captive Power Plant is well within the prescribed limit. Due to the use of natural gas with very low sulphur content and sweetened refinery fuel gas as fuel.
	2.2 Installation of low Nox burner is yet to be completed. Refineries shall give the status and time target for the same and if installation is not possible, reason to be given, so that decision could be arrived.	As natural gas is the primary fuel used at Digboi Refinery, emissions of NOx from process units and Captive Power Plant is below the limit. Since the refinery is using natural gas, formation of NOx is very low and always remains within the prescribed limit. Further, low NOx burners are also fitted in all the new units viz. Solvent De-waxing Unit, Hydrotreater Unit, Delayed Coking Unit and MSQ Unit

IOC Refineries expressed inability For firing, only fuel gas is used and no to meet PM stipulations on neat fuel gas liquid fuels are in use. firing in furnaces. Member Secretary Emission of PM from stacks at Digboi advised to generated data for both cases refinery is within specified norms. i.e. neat fuel gas firing and mixed (oil and gas)firing to look into the issue of PM standards compliance. All the Refineries are advised to submit in detail fuel gas & Oil analysis and emission data every month to HSE, RHQ for taking up with MoEF & CC. PM in FCC regenerators is not Not applicable for Digboi Refinery. 2.4 achieved is some of the units. In some of the units it is proposed to be taken during revamp. Gujarat and Mathura Refineries to give detail action plan. 1. Bioremediation of 4500MT Oily sludge Member Secretary, CPCB expressed, 3 although the units have started is in progress through M/s Innotech bioremediation of oily sludge, the Interventions Private Limited. disposal of bio-remediated material and Guwahati. storage will be a problem leading to space constraint and leachate problem 2. 1st batch of 3000 MT of oily sludge sold on the nearby areas, He advised to find to M/S Star Petrochem Industries via better avenues like Co-processing of oily MSTC e-auction on March'22 sludge in cement plants or providing common remediation sites. Within 6 3. Another batch of 3000 MT of oily months. sludge sold to M/S Falk Industries Fuel Pvt. Ltd via MSTC e-auction on May'23 Linking of CAAQMS & Stacks data to Online connectivity of Furnaces with heat server. Target date June, 2013(to submit capacity of 10mkcl/hr (HGU) established to road map) and 7-8 months for CPCB Server. Implementation. The pending Refineries shall submit activity-wise schedule One no. of Continuous Ambient Air Quality within a month. Monitoring Station installed and commissioned in September 2012. Member Secretary desired that all the Online effluent monitoring & connectivity to parameters of treated effluent shall be CPCB server was commissioned on 28th Linked to CPCB server using online December 2015. analyzer by taking advantage of the WebSite: Online Emission and Effluent technological development. All the Monitoring System (cpcb.gov.in) Refineries shall initiate necessary action for implementation of the same. Till such time, Refineries shall post the requisite data on CPCB server day-to-day basis

Low

(Target -July, 2013)

6	Minimization of fugitive VOC emission from ETP 's- To meet the environmental standard, old Refineries shall take necessary action to cover effluent sump, API, TPI and other equipments exposed to atmosphere to reduce fugitive emission and also recovery facility.	For reduction of fugitive VOC emission from ETP,VOC reduction facility has been commissioned inside ETP on 04.12.2022 The CSS (Central Static Sump) inside refinery has already been covered.
7	Member Secretary advised Refineries to follow LDAR programme in true spirit as per gazette notification of "Effluent & Emission Standards, 2008. Data shall be submitted in periodic intervals to CPCB	Quarterly LDAR surveys are being followed. LDAR reports are being sent to MoEF & CC Bi- annually along with EC compliance report.
8	Member Secretary expressed concern on non-reporting of incidents of fire, oil spills and pollution to CPCB. He advised all the Refineries to reporting of such incidents to CPCB of concerned area during such occurrence.	No major oil spill has occurred till 30/09/2023. Shall be ensured.

त्रिदिव सईकीया /TRIDIB SAIKIA सो.एम. (एव एस ई) /C.M. (HSE) आई.ओ.सी.एल.(एओडी), डिगवोई I.O.C.L. (AOD), DIGBOI

Place: Digboi

Date: 06,12.23

Signature of the Authorized Person

Designation: CM(HSE)